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Abstract:
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian 
motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated 
by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The 
accuracy of Brownian simulation was checked by performing a series of simulations. Particles’ trajectories for 
an ensemble of 1000 particles were calculated and compiled by Lagrangian approach. Numerical simulation 
in cartesian coordinate were validated by exact solution of Einstein and good agreement was observed. 
Moreover, strong convergence of proposed method has been considered. The approximated scheme has strong 
order of convergence, 1.5. Langevin equations in cylindrical coordinate were also considered as stochastic 
differential equations (SDE) and in different SDE calculus were solved numerically by validated numerical 
method. A novel approach to simulating the Brownian motion as the Gaussian white noise is presented in 
cylindrical coordinates. Obtained results for different SDEs calculus were compared and suggested that there 
are no considerable differences between Ito and Stratonovich approaches in two phase flow systems.
Keywords: Stochastic Differential Equation (SDE), Nano-Aerosol (NA), Laminar Fluid, Stratonovich, Ito.

1. INTRODUCTION

Studying the dynamics of aerosols motion has 
attracted attentions in the past two decades. An 
aerosol is defined as a collection of solid or liquid 
particles suspended in a gas. Aerosols are at least 
two-phase systems, consisting of particles and gas 
in which they are suspended [1-3].
They are also one of the major air pollutants and 
recent studies of the biological effects of nano-
aerosols (NAs) show signs that some manufactured 
NAs display unexpected toxicity to living 
organisms. Some of these particles can become 
potentially harmful and even cause deleterious 
health effects [4, 5].
Analyzing the diffusion of small aerosols has 
considerable effects on controlling and measuring 

the aerosol concentration in different area [5-7] 
because particle diffusion plays a major role in 
aerosol transportation mechanisms [5]. One of the 
common types of diffusion is Brownian diffusion 
which has important role in transfer mechanisms of 
ultrafine particles.
The “Brownian motion” refers to the irregular 
dynamics exhibited by a test particle (such as dust or 
pollen) in a liquid environment. This phenomenon 
was first analyzed in detail by Robert Brown in 
Scotland on 1827. Einstein explained this observation 
theoretically in cartesian coordinates, later on. In 
1909 his theory was confirmed experimentally 
by Perrin [8-10]. During the first half of the 20th 

century, the Brownian diffusion was considered 
as a Stochastic Differential Equation (SDE) by 
Langevin, Uhlenbeck, Ornstein and many other 
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scientists [10, 11]. Yet, to our knowledge, nobody 
has considered the Brownian motion in cylindrical 
coordinate and/or different SDE calculus (Ito and 
Stratonovich). The difference between Ito and 
Stratonovich calculus is evident from the different 
choices of the intermediate points in describing 
the stochastic integrals (see appendix A). Ito 
definition is recommended by mathematicians, but 
the physicists prefer the Stratonovich advantages. 
In particular, physicists argued that the physical 
processes are actually smooth on extremely short 
time scales, order of molecular collision times, 

and hence in physical phenomena the Stratonovich 
definition is recommended.
In light of the above discussion, the main goal of 
this study concerns the fundamental understanding 
of how Brownian motion and numerical simulations 
can be applied for ultrafine aerosols within the 
frameworks of different SDE calculus and/or in 
cylindrical coordinate.
This paper is organized as follow: in section 2, 
dynamics of a nano aerosol motion in 1D cartesian 
coordinates was described and an approximate term 
for Brownian motion was presented. In section 

11 
 

Tables

P(P
Oper
Pres

30

(n
Particle D

3
1
3

10
 
 
Figures 

Figu

T
Pa)
rating
sure

00

T
nm)
Diameter

3
0
0

00

ure 1: Mean d

Table 1: Oper
T(K)

Temperatu

293 

Table 2: Nece
 (m2/s)

Diffusion
Coefficien
2.87×10-4

2.58×10-7

2.87×10-6

2.58×10-9

displacement

rating conditi

ure

essary coeffici
)
n
nt

Rela

4 0
7 0
6 0
9 0

t of ensembles

ions and carr
 (Kg/m3)

1.2 

ients for diffe
(s)

axation Time

0.16×10-5

0.53×10-5

0.16×10-4

0.55×10-4

s of ultrafine 

rier gas (air) p
 (P

Dyn
Visc
1.81

erent particle 

e Fric
Coeff

6.00
1.87
6.00
1.87

aerosols (

properties
Pa.s)

namic
cosity O
×10-5

diameters 

ction
ficient
0×105

7×105

0×104

7×104

=10nm) susp

 ( m)
Mean Free Pa
Operating Pre

22.22

Power Spect

6.57×10
5.32×10
6.57×10
5.32×10

pended in air.

ath at 
essure

trum

7

3

3

1

11 
 

Tables

P(P
Oper
Pres

30

(n
Particle D

3
1
3

10
 
 
Figures 

Figu

T
Pa)
rating
sure

00

T
nm)
Diameter

3
0
0

00

ure 1: Mean d

Table 1: Oper
T(K)

Temperatu

293 

Table 2: Nece
 (m2/s)

Diffusion
Coefficien
2.87×10-4

2.58×10-7

2.87×10-6

2.58×10-9

displacement

rating conditi

ure

essary coeffici
)
n
nt

Rela

4 0
7 0
6 0
9 0

t of ensembles

ions and carr
 (Kg/m3)

1.2 

ients for diffe
(s)

axation Time

0.16×10-5

0.53×10-5

0.16×10-4

0.55×10-4

s of ultrafine 

rier gas (air) p
 (P

Dyn
Visc
1.81

erent particle 

e Fric
Coeff

6.00
1.87
6.00
1.87

aerosols (

properties
Pa.s)

namic
cosity O
×10-5

diameters 

ction
ficient
0×105

7×105

0×104

7×104

=10nm) susp

 ( m)
Mean Free Pa
Operating Pre

22.22

Power Spect

6.57×10
5.32×10
6.57×10
5.32×10

pended in air.

ath at 
essure

trum

7

3

3

1

Ghaffarpasand, et al.

Table 1: Operating conditions and carrier gas (air) prperties

Table 2: Necessary coefficients for different particle diameters
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3 equation of motion was numerically solved by 
the approximated term. Numerical method was 
validated by comparing the elaborated results with 
exact solution of equation of motion and its order 
of convergence evaluated. In section 4 equation of 
motion of a nano particle in cylindrical coordinates 

was analytically investigated and the effects of 
different SDE calculus was studied. In section 5 
equation of motion in cylindrical coordinates was 
numerically solved by validated numerical method. 
Finally, we compare the results and conclusion will 
be presented. 
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2. LANGEVIN  EQUATION

 The equation of motion of an ultrafine aerosol which 
suspended in a laminar gas flow called Langevin which 
is given below for a dilute gas-particle flow [12]:

                        (1)

where VP is the particle velocity vector, FD is 
the drag force per unit mass, FB is a fluctuating 

part which represents Brownian effect, g is the 
acceleration of gravity, r is the gas density and  rP 
is the particle density. Particle concentration was 
assumed too low and the carrier gas flow velocity 
field does not affect the particle motion. Note that 
the particles are assumed spherical so that the other 
forces (e.g. lift force) were neglected. Ultrafine 
particles have extremely low mass, so Gravity force 
can be neglected relative to Brownian effect and 
Drag force. In the other point, it can be concluded 
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that, the dominant forces in motion of an ultrafine 
aerosol are Drag and Brownian forces which will be 
further described.

2.1. Drag force

The expression for the modified Stokes drag force 
per unit mass is given by [2]:

                                    (2)

Here Vf is the velocity vector of carrier fluids, 
 is the drag coefficient, where dp is 

particle diameter, mp is mass of the particle, µ is 
the coefficient of dynamic viscosity and CC is the 
Cunningham slip correction factor which is:

 
(3)

where P is the absolute pressure in kPa and dp is 
the particle diameter in µm. As it was mentioned 
before, particle concentration was assumed too low 
and, so, the effects of particle motion on the carrier 
fluids can be ignored. On the other hand, suspended 
particles in laminar fluid flow in parallel layers. As 
there is no any solid boundary, the velocity vector 
of carrier fluid can be considered as a constant value 
and, in this case, it can be neglected in numerical 
integrations and analytical investigations of 
Langevin equation. 

2.2. Brownian Motion

It is well known that the Brownian motion of nano-
aerosols is due to random impact of gas molecules. 
If  x(t) denotes the position of a particle at time t, 
then the displacement x(t)-x(0) is the effect of the 
purely random bombardment by the molecules of 
fluids. Figure 1 shows the tracks for ensembles of 
ultrafine aerosols which were suspended in ambient 
air and affected by bombardment of air molecules.
Wiener (1931) considered the position of an ultrafine 
particle which suspended in a dilute carrier gas as 
a stochastic process. He found that the fluctuating 

part of equation of motion, FB(t), have following 
properties [13]:
1. Independence of increments: There will be 

correlation between the values of FB(t) at 
different times t1 and t2 only when  is 
very small:

                        (4)

where  is a function and has a very sharp 
maximum at z=0.
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2. Normal increments:  has 
normal distribution with zero mean and variance 
t1-t2:  

                                                  (5)

3. Continuity of paths:  is 
continuous function of t.

Now we can write the Langevin equation (1) as 

follow:

                                    (6)

where b is drag coefficient which mentioned in 
section 2.1. By integrating the above differential 
equation we can get:

     (7)
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By taking the mean over an ensemble of particles, 
and using (5) we get:

      (8)

The mean velocity goes down exponentially due 
to the friction coefficient. Calculating the mean by 
squaring the equation (7), gives:

   (9)

The new variables  
are introduced, then by using (4) the above integral 
is:

  (10)

where τ is defined as:

    (11)
   
We know from the theorem of equipartition of 
energy and kinetic theory of gases, the following 
condition:

    (12)

where kB is the Boltzman constant and T is the 
temperature. By using the equations (9), (10), and 
(12) the value of t is obtained as follow:

      (13)

A definition for f(z) can be derived by using 
equations (11), (12), and help of dirac delta function 
property  as follows:

 (14)

It was known that autocorrelation of a random 
process describes the correlation between values of 
the process at different time. The Fourier transform of 
autocorrelation was also defined as power spectrum 
of random process. A stochastic process is called 

white noise when its power spectrum is independent 
of frequency. The name white noise comes from the 
fact that its power spectrum is uniformly distributed 
in frequency, which is a characteristic of white light. 
The equation (14) proved that the autocorrelation 
of (power spectrum) of Brownian motion is 
independent of time (frequency).
From this fact and the second property of the 
Brownian motion (equation (5)) it proved that the 
Brownian motion in 1D cartesian coordinate can be 
approximated by a Gaussian white noise process 

when its power spectrum is equal to .

3. NUMERICAL VALIDATION

3.1. Exact solution

The famous Einstein relation between the diffusion 
coefficient and the long time behavior of the mean-
square displacements of an ultrafine particle as a 
function of time is the basis of numerical validation 
of elaborated term for Brownian motion. Diffusion of 
aerosol particles is the net transport of these particles 
in a concentration gradient. This transport is always 
from a region of higher concentration to a region of 
lower concentration. The Einstein relation (following 
equation) is important equation that relates the 
diffusion coefficient to mean square displacement of 
an aerosol in each cartesian coordinates. 

3.2. Numerical simulation

Under typical operating two phase flow conditions, 
particle concentration are low enough and because 
particle-particle interactions are negligible the 
presence of particles does not affect the carrier 
gas flow fields. Particle trajectories were obtained 
by a Lagrangian approach. In order to investigate 
the effect of Brownian diffusion in Lagrangian 
calculations, one needs to add the random Brownian 
force to Newton’s equation of motion along with the 
deterministic drag term.

International Journal of Nanoscience and Nanotechnology
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In section 2.2, we mentioned the physical meaning 
of Brownian effect which approximated by a 
Gaussian white noise and obtained as equation (14). 
To construct a computer simulation of the Langevin 
equation, the delta function of the white noise needs 
to be replaced by a numerical representation as 
[15]:

  (17)

Thus, the Brownian force per unit mass in 1D 

cartesian coordinates within each time step can be 
written as: 

       (18)

A is a constant which represents a zero mean 
Gaussian random numbers with unit variance. 
Power spectrum, S0, can be defined as:

   (19)

where v is kinematic viscosity coefficient of fluid.
There are different numerical methods that can 
integrate the Langevin equation. Euler-Maruyama 
and Rung-Kutta are such that familiar methods. 
Euler- Maruyama Method which is simpler and 
faster was used to integrate the Langevin equation 
numerically [14]. Furthermore, it will be shown that 
this method, in this case, has an acceptable order of 
convergence in comparison to the other methods. In 
this method, the equation of motion was numerically 
integrated by an explicit Euler method. The value of 
Brownian force which was defined as equation (18) 
have been changed in each time step by a Gaussian 
random number generator. 
The simulation time steps, ∆t, is assumed to be larger 
than the time step between successive collisions of 
the particle with the surrounding fluid molecules 
(contact time during a collision ~ picoseconds), but 
much smaller than the time step associated with an 
appreciable change in the particle displacement due 
to the friction forces (order of magnitude of inertial 
relaxation time of particles ~ microseconds). Thus, 
we are concerned with time steps of the order of 
momentum relaxation time (β-1) or greater [16].
Operating pressure was taken low enough (300Pa) 
so that particle-particle interactions are negligible. 
Air in ambient condition was considered as carrier 
gas. The operating conditions and carrier gas (Air) 
properties are gathered in Table1. Table 2 shows 
the relevant coefficients of particles with different 
size, where the ratio of the particle density to fluid 
density is 2000.
Einstein (1909) obtained the diffusion theory 
of suspended particles, which described the 
relation of mean square displacement of particles 
in 1D cartesian coordinate as a function of time 

Figure 8: Mean square displacement of radial 
components along time. Dashed line represents 2Dt.
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. As there are no any analytical solutions 
for equation of motion in cylindrical coordinate, 
the presented model was validated by this theory 
and then used to simulate the motion of particles in 
cylindrical coordinates. 
The ensembles of 1000 particles, which are 
distributed uniformly in a domain with a dimension 
of 5mm, were used to compute the mean-square 
displacement. The ensemble improves the accuracy 
of the simulation procedure. Different particle 
diameters (3, 10, 30 and 100 nm) were used to 
improve the validation procedure. The results were 
obtained from simulation are shown in figures 
2-6. As we can see from figures, the results are 
in good agreement with the diffusion theory of 
Einstein. Observed deviations are, may be, due to 
the fluctuations which were generated by random 
number generator in each time step. 

3.3. Strong convergence of the model

It is known that [17] the exact solution of Langevin 
equation  in 1D 
cartesian coordinate is:

(20)

where Vx(0) is initial velocity which is assumed to 
be zero. This process is called Ornstein-Uhlenbeck 
process which has different answers in different 
SDE calculus.
The model is said to have strong convergence equal  
γ if there exists a constant C such that

       (21)

where E|Xn and X(τ)| are the expected value. 
Strong convergence of numerical methods gives 
a measure of the path wise closeness at the end of 
the time interval. In the other word, it’s a measure 
of agreement between numerical and exact 
results. Strong approximations involve simulating 
the solution of SDEs when a good path wise 
approximation is required.
For evaluating the order of convergence the exact 
and numerical solutions of considered SDE were 
investigated at any fixed point (∆t is 
sufficiently small). On the other hand, the error takes 
into account at the end point, thus we can write:

    (22).

Stochastic integral in equation (20) was solved 
by the Ito and the Stratonovich definition which 
represent different stochastic calculus. The Ito and 
Stratonovich calculus are provided in Appendix A. 
Thousands of different Brownian paths of ultrafine 
aerosols (diameter of 10nm) were computed over 
[0.5×10-6] with δt=0.05×10-5. For each path, five 
different step sizes: ∆t=2(p-1)δt for 0≤p≤1 were 
used. For reference, a dashed line of slope 1.5 is 
added. Converging was tested separately in Ito and 
Stratonovich definitions. 
As we can see from figure 5 the slop of lines are 
well matched. The results of calculations show that: 
γ=1.4693 and C=0.4349 for Stratonovich definition 
and γ=1.5293 and C=0.5258 for Ito definition. 
Hence our results are consistent with a strong order 
of convergence equal 1.5.
It was known that [17] the Runge-Kutta method with 
strong order of convergence equal 1.5 is one of the best 
accurate methods to investigate the SDEs. As it was 
observed, Euler-Maruyama method for investigating 
the motion of nano-particles is an acceptable method 
both in terms of simplicity and accuracy.

4. LANGEVIN EQUATION IN CYLINDRICAL 
COORDINATES

Up to now, it was shown that Langevin equation of 
an ultrafine particle, which suspended in a dilute 
laminar flow, in 1D cartesian coordinate can be 
represented by a SDE, from here the motion of 
particles in 2D cartesian and cylindrical coordinates 
are considered. In this section equation of motion in 
cylindrical coordinates and in different SDE calculus 
(Ito and Stratonovich) were studied analytically. 
The relations for transforming between coordinates 
are not similar for different SDE calculus [17].
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variables, which states that if: 
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where		����, ���� �� are m-dimensional vectors, 
����� is a n-dimensional process and �� ��� �� is 
a m × n matrices. Then for every m-dimensional 
function, ����, with continuous partial 
derivatives up to order two we can write: 
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where 	�� � �
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By using the Ito formula and equations (26): 
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It is shown that (see appendix B) If � is an 
orthogonal � � � matrix, i.e. ��� � �, and � is 
a d-dimensional standard Gaussian vector, then 
�� is also a d-dimensional standard Gaussian 
vector. As the Brownian motion defined as a 
Gaussian function, and above � � � matrix is an 
orthogonal matrix, it can be concluded that 
Brownian motion in radial and tangential 
direction can be also considered as a Gaussian 
white noise and, so, the Ito definition of nano-
aerosol motion in cylindrical coordinates are: 
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��� � ����� � ����
� � �� � ������

�   (31) 

Stratonovich definition of Langevin Equation 
It is also possible to write a SDE using 
Stratonovich approach. There is a specific 
relation between Ito and Stratonovich definition 
[17]. If Ito’s equation for multiple variables was 
written as:  
 
 �� � ���� ���� � �� ��� �������   (32) 
 
Then, it can be shown that by the following 
transformation: 
 
 ��� � �� � �

�∑ �����������    (33)  
 ���� � ���    (34) 
 
The corresponding Stratonovich equation can be 
generated. By substituting the equation (31) in 
(33) and (34), Langevin equations in cylindrical 
coordinates in Stratonovich definition are: 
 

�
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direction can be also considered as a Gaussian 
white noise and, so, the Ito definition of nano-
aerosol motion in cylindrical coordinates are: 
 

   � ��� � ����� � ���
� � �� � ������

��� � ����� � ����
� � �� � ������

�   (31) 

Stratonovich definition of Langevin Equation 
It is also possible to write a SDE using 
Stratonovich approach. There is a specific 
relation between Ito and Stratonovich definition 
[17]. If Ito’s equation for multiple variables was 
written as:  
 
 �� � ���� ���� � �� ��� �������   (32) 
 
Then, it can be shown that by the following 
transformation: 
 
 ��� � �� � �

�∑ �����������    (33)  
 ���� � ���    (34) 
 
The corresponding Stratonovich equation can be 
generated. By substituting the equation (31) in 
(33) and (34), Langevin equations in cylindrical 
coordinates in Stratonovich definition are: 
 

�
��� � ����� � ���

� �
�
���� �� � ������

��� � ����� � ����
� � �

���� �� � ������
�   

(35) 
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Ito definition of Langevin Equation 
Langevin equation in 2D cartesian coordinates 
could be represented as: 
 

���� � ���� � ���
��� � ���� � ����    (23) 

 
where		��� � �����,		��� � �����, and ��� �� 
are the particle velocity components. It is clear 
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components of displacement and velocity in 
cartesian and cylindrical coordinates. 
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where �� � ��

�� , and �� � � ����  are the radial 
component and the tangential component of 
velocity, respectively. 
Ito calculus provides a relation for changing the 

variables, which states that if: 
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a m × n matrices. Then for every m-dimensional 
function, ����, with continuous partial 
derivatives up to order two we can write: 
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direction can be also considered as a Gaussian 
white noise and, so, the Ito definition of nano-
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The additional terms (� �
��� and�� �

���) were 
added in comparison to the Ito definition. These 
differences will be studied in the next section, 
when the numerical investigations of equation of 
motion in different SDE calculus are presented. 

Numerical Simulation of the Langevin Equation 
in Cylindrical Coordinates 

Langevin equation in cylindrical coordinates for 
radial and tangential components of velocity 
(equations (31) and (35)) was solved by 
approximate model which was described in 
section 2. The spherical particles, 10nm in 
diameter, were assumed to be uniformly 
distributed in a tube with a diameter of 
10mm.The operating conditions are the same as 
the validation conditions given in tables 1 and 2. 
As we can see from equation (26), there exists a 
specific relation between velocity components in 
the cartesian and cylindrical coordinates as 
follow:  
 
 ������� � ������� � ������� � �������       (36) 
 
Figure 7 shows the sum of mean of velocity 
components in different coordinates and 
different calculus. On the other hand, mean 
square displacement of radial component is 
considered in figures 8. Two important results 
can be found by analyzing these figures. First, it 
was seen that there is no significant difference 
between Ito and Stratonovich definition, in the 
other point, both definitions lead to same result. 
Second, although��� � ������, and 〈��〉 �
〈��〉 � ��� but mean square displacement of 
radial component in cylindrical coordinate is  
〈��〉 � ���. This is due to the effect of 
tangential velocity component in equation (36) 
which was ignored incorrectly in some 
literatures.  
 

5. CONCLUSION  
 
In this work, the dynamics of Brownian motion 
was described analytically. A compressive 
validation and simulation exercises in different 
coordinates and different SDE calculus were 
performed and finally the following conclusions 
can be drawn: 

1- As presented in section 3.3 Euler-Maruyama 
method has strong order of convergence 1.5 
when was used to simulate the Langevin 
equation.  On the other hand, this method is 
simpler and faster than other numerical methods. 
So, the  Euler-Maruyama method is 
recommended for studying the molecular 
bombardment of nano-aerosols suspended in air. 

2- Radial and tangential components of collision 
force in cylindrical coordinates which come 
from bombardment of carrier gas molecules can 
be approximated by the Gaussian white noise 
with similar power spectrum of the x-y cartesian 
coordinates. As the Brownian force has same 
values in spaces which were orthogonal, it was 
proved that the nature of the Brownian motion is 
invariant due to the orthogonal transformation. 

3- The simulation results clearly show that for 
stochastic process involving noise with a finite 
correlation time, like as the motion of nano-
aerosols in laminar air, it does not matter which 
definition is chosen and both of these different 
mathematical schemes have same physical 
results. 

4- Mean square radial displacement in cylindrical 
coordinates is given by 〈��〉 � ���. In some 
literatures were assumed that 〈��〉 � ���. The 
neglect of the tangential velocity component in 
〈V��〉 � 〈Vθ�〉 � 〈V��〉 � 〈V��〉  can lead to the 
mentioned error.   
In section 5 was shown that the radial and 
tangential components of the Brownian motions 
are similar, then, the mean square of tangential 
velocity component must not be neglected. In 
addition, as shown in figure 7, the radial velocity 
component in both definitions (Ito and 
Stratonovich) is similar to x or y velocity 
component. So, the mean square of radial 
component of displacement is the same as the x 
or y components of displacement. 
    
Appendix A 
Ito and Stratonovich Calculus 
Integrals of random processes are very 
important, especially in the theory of Brownian 
motion. One kind of integral of random 
processes is easy to define [8]. Let  ���� be a 
random processes, ����, one of its sample 
function, and ���� some fixed function. Then we 
define 

(26)

(25)

(24)

(27)
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�� is also a d-dimensional standard Gaussian 
vector. As the Brownian motion defined as a 
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orthogonal matrix, it can be concluded that 
Brownian motion in radial and tangential 
direction can be also considered as a Gaussian 
white noise and, so, the Ito definition of nano-
aerosol motion in cylindrical coordinates are: 
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Stratonovich definition of Langevin Equation 
It is also possible to write a SDE using 
Stratonovich approach. There is a specific 
relation between Ito and Stratonovich definition 
[17]. If Ito’s equation for multiple variables was 
written as:  
 
 �� � ���� ���� � �� ��� �������   (32) 
 
Then, it can be shown that by the following 
transformation: 
 
 ��� � �� � �

�∑ �����������    (33)  
 ���� � ���    (34) 
 
The corresponding Stratonovich equation can be 
generated. By substituting the equation (31) in 
(33) and (34), Langevin equations in cylindrical 
coordinates in Stratonovich definition are: 
 

�
��� � ����� � ���

� �
�
���� �� � ������

��� � ����� � ����
� � �

���� �� � ������
�   

(35) 

 4.2. Stratonovich definition of Langevin equation

(32)

(33)
(34)

(28)

(30)
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can be found by analyzing these figures. First, it 
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other point, both definitions lead to same result. 
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can be drawn: 

1- As presented in section 3.3 Euler-Maruyama 
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simpler and faster than other numerical methods. 
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be approximated by the Gaussian white noise 
with similar power spectrum of the x-y cartesian 
coordinates. As the Brownian force has same 
values in spaces which were orthogonal, it was 
proved that the nature of the Brownian motion is 
invariant due to the orthogonal transformation. 

3- The simulation results clearly show that for 
stochastic process involving noise with a finite 
correlation time, like as the motion of nano-
aerosols in laminar air, it does not matter which 
definition is chosen and both of these different 
mathematical schemes have same physical 
results. 
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coordinates is given by 〈��〉 � ���. In some 
literatures were assumed that 〈��〉 � ���. The 
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� ���������� ��
����	������	��	������	���������	 (A-1) 

�lim� �����
�

���������� � ���� � �� � �� 

The quantity in braces is familiar Rieman sum 
defining the integral of the sample function, �. If 
the sample functions are integrable, for example 
if � is continuous, then the integral of � defined 
by (A-1) will exist. Similarly, if the sample 
functions of � are of bounded variation, one can 
define the Stieltjes integral ����������	as the 
family of Stieltjes integral of the sample 
functions 
lim ∑ ����������� � ���������    (A-2) 
Integrals of the structure ������������� when 
���� is not of bounded variation can be defined 
as limits of Rieman-Stieltjes sums 
lim ∑ ����� ��́������� � �������� 
where		���� � ��́ � ��. 
If ���� varies very rapidly in the interval 
�� � ����	, no matter how small that interval, 
then the limit of Reiman-Stieltjes sum will 
clearly depend on how those intermediate points 
��́ are chosen. There are two definitions that 
have been used. The first in point of time, Ito 
definition, ��́ is always chosen to be ��, the 
value at the end of kth interval. The second 
definition is due to R. Stratonovich (1996). 
According to this definition, one takes		��́ ���� � �������, the midpoint of the kth interval. 
Ito and Stratonovich definitions had different 
properties which can find with more detailed in 
references [8, 17]. 

Appendix B 

There was a lemma in stochastic calculus [19] 
which says that 
Lemma. If � is an orthogonal � � � matrix, i. e. 
��� � �, and � is a d-dimensional standard 
Gaussian vector, then �� is also a d-dimensional 
standard Gaussian vector. 
Corollary. Let �� and �� be independent and 
normally distributed with zero mean and 
variance	��. Then ������ � ������ and 
������� � ������ are independent and 
normally distributed with same mean and 
variance. 
Proof. The vector ���� ,

��
� �� is standard 

Gaussian by assumption. The matrices 
� � � ���� ����

����� �����  
is an orthogonal matrix and applying to our 
vector yields �

� 	������� � ������� and              
�
� �������� � �������, which thus must have 
independent standard normal coordinates. 
It’s clear that there is a straight relation between 
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