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Abstract:
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the 
simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, 
internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the 
concentration of the random transverse field.
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1. INTRODUCTION

Recently, a considerable attention has been paid 
to the investigation of the transverse Ising model 
(TIM). The main reason of such a great interest can 
be attributed to the fact that the TIM is very valuable 
model because of its different possible application. 
In fact, the TIM enables a simple explanation of 
the quantum properties of the hydrogen-bonded 
ferroelectrics, cooperative Jahn-Teller systems, 
as well as strongly anisotropic magnetic materials 
in	 the	 transverse	 field	 [see	 Ref.1	 and	 references	
therein]. The TIM has been studied by high 
temperature expansions, Monte-Carlo methods, a 
method of combining the pair approximation with 
the discretized path integral representation, cluster 
approximation, renormalization group method, 
the	 effective-field	 theory	 (EFT)	 and	 EFT	 with	
correlations	[2-12].	It	has	been	found	that	the	TIM	
has	a	finite	temperature	phase	transition	which	can	
be suppressed to zero temperature where criticality 
still	occurs	for	a	certain	value	of	the	transverse	field.	
Therefore, the TIM serves as a model of quantum 
critical phenomena at zero temperature, In addition 
to works on the two state spin systems, the spin-1 

transverse Ising model and higher spin cases have 
also	received	attention	[13,14].
Another problem of growing interest is associated 
with	 the	 random	 transverse	 field	 Ising	 model	
(RTFIM). One of the interesting phenomena in the 
RTFIM is the occurrence of a tricritical behavior. 
The RTFIM has examined by the use of various 
techniques,	such	as	mean	field	theory,	Monte-Carlo	
simulations, renormalization group calculations, 
Bethe-Peirls	 approximation	 and	 effective-field	
theories	 (EFT)	 [15-22].	 It	 is	worth	noting	 that	 the	
analysis of the RTFIM have been almost restricted 
to the simple spin- 1

2
 system. Only very recently, 

some interest has been directed to understand 
the more complicated systems in the presence of 
random	fields	 (i.e.	 the	 transverse	 Ising	model,	 the	
amorphous Ising ferromagnet, the Blume-Capel 
model and spin-S Ising model). It has been shown 
that a very rich critical behavior can be found in 
these systems and many interesting phenomena can 
appear (i.e. the re-entrance behavior or the existence 
of two tricritical points).        
The purpose of this paper is to investigate the effect 
of	a	transverse	random	field,	distributed	according	a	
trimodal distribution (2), on the phase diagram and 
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magnetic properties of a simple cubic (z=6) lattice 
ferromagnetic Ising system consisting of magnetic 
atoms with spin-1.
This	 study	 is	done	using	 the	effective-field	 theory	
(EFT)	with	correlations	method.	The	equations	are	
derived using a probability distribution method 
based on the use of exact Van der Waerden 
identities. As far as we know, such a study has not 
been	yet	carried	out.	Section	2,	described	the	EFT	
with	 correlations	 and	 the	 formulation	 of	 EFT	 is	
applied to a three-dimensional lattice (simple cubic 
with	z=6)	consisting	of	spin-1	atoms.	In	section	3,	
we present our numerical results and discussions, 
such as the phase diagrams, the thermal variations 
of the transverse magnetization, the internal energy, 
the	magnetic	specific	heat	as	a	function	of	different	
values of p, the concentration of the random 
transverse	field.

2. THEORY  AND  FORMULATION

The	random	transverse	field	Ising	model	is	described	
by the following Hamiltonian:

 ( )z z x
B i j B i i

ij i
H J S S S= − − Ω∑ ∑              (1) 

where ,z x
i iS S are components of a spin-1 operator 

at site i, BJ is the exchange interaction at the 
bulk.	 The	 first	 and	 second	 summations	 are	 over	
nearest-neighbor sites and single sites located on 
the	 free	 space,	 respectively.	 The	 transverse	 field
( )B iΩ is assumed to have the trimodal probability 
distribution:
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where p denoted the fraction of spins not exposed to 
the	transverse	field .
The starting point of the statistics of our spin system 
is	 the	 relation	 proposed	 by	 Sa’-Barreto	 et	 al	 [7],	
which is generally given by: 
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where
1

Bk T
β = , ˆ

iO  is a spin operator function at 

the site i, iTr means the partial trace with respect 
to the lattice site i, if here represents an arbitrary 
function of spin variables except z

iS and x
iS at 

a site i and ...  indicates the canonical thermal 
average. iH includes all parts of H associated with 
the lattice site i and is given by:
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By	 the	 use	 of	 (3),	 the	 longitudinal	 and	 transverse	
site magnetizations for the spin-1 random transverse 
Ising model are given by, (with 1if = ),

2sinh( )
1 2cosh( )

z i i
i

i i

A ES
E E

β
β

=
+                    (6)

2sinh( )
1 cosh( )

x i
i

i i

EBS
E E

β
β

=
+

                  (7)

 With     ( )B iB = Ω                                  (8)

2 2
i iE B A= +                        (9)

Introducing	the	differential	operator	technique	[23],	
equations (6) and (7) can be rewritten as:

0( ) ,iAz
i B xS e F x∇

==                   (10) 

0( ) ,iAx
i B xS e G x∇

==
                    (11)                                               

where
x
∂

∇ =
∂

is a differential operator	 (defined	

by ( ) ( )ae F x F x a∇ = + ). The functions 

( ), ( )B BF x G x are	defined	by:	
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In order to evaluate the above equations, for spin-1, 
we use the decoupling approximation:

2 2( ) ... ( ) ...z z z z z z
i j l i j lS S S S S S≅  (14)

For ...i j l≠ ≠ ≠ , we use the generalized but 
approximated	Van	der	Waerden	identity	[24]:	
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iSη =                         (16)

then (10) and (11) are rewritten as: 
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where z is the coordination number, and for the 
simple cubic lattice z=6 .
Because	 of	 randomness	 of	 transverse	 fields,	 we	
should perform the random average of ( )B iΩ
with using the probability distribution function

(( ) )B iP Ω . We	 can	 define z z
i r

Sµ = and
x x

i r
Sµ =  and 

2 2( )z
i r

Sη = , where ...
r

denotes	the	transverse	field	average.
Thus, doing the random average, (17) and 
(18) can be transformed into the forms:                                
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On the other hand, for a spin S higher than 
1
2

S = , 

one has to evaluate the parameter η  (for 1
2

S =  

parameter η  is given by 1
2

η = ). It can be derived 

in the same way as z
iS  and x

iS by	the	use	of	(3):	
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Here, the function ( )BH x 	for	spin-1	is	defined	by:
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Where  2 2y B x= +                           (23)

and the functions ( )BF x and ( )BG x  and ( )BH x are 
obtained as follows:
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The random averaged internal energyU is given by:
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N
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where N is the number of magnetic atoms. 
Here, by substituting i if A= into	 (3),	 the	
first	 term	 of	 this	 relation	 can	 be	 written	 as:																							
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It is clear that for the evaluation of averaged internal 
energyU , we must know ,z xµ µ  andη . Then these 
quantities can be easily obtained by solving (19)-
(21) numerically. Finally, the averaged magnetic 
specific	heat	can	be	determined	from	the	relation:						

,UC
T
∂

=
∂ 	 	 	 	 	 	 	 	 	 	 	 (31)

3. SUMMARY  AND  DISCUSSION

 In this section, the results for the spin-1 random 
transverse	Ising	model	are	shown.	At	first,	in	Figure	
1, there are presented the phase diagrams in the

TΩ− plane for various values of p in the case of 
the	simple	cubic	(z=6)	lattice.	From	this	figure	we	
can see that the effect of a random transverse Ising 
model. Namely, the critical temperature gradually 
decreases from its Ising value at 0Ω = and rapidly 
vanishes	when	the	transverse	field	approaches	some	
critical cΩ  depending on the value of p. It can be 
also seen that the value of cΩ in spin-1 is greater than

cΩ  in spin- 1
2
	system.	When	the	transverse	field	is	

bimodally distributed (p=0), the critical temperature 
decrease gradually from its value of ( 0)cT Ω =

( 3.5287c

B

T
J

= ), to vanish at some critical value of 

cΩ ( 5.2865c

BJ
Ω

= ).	As	shown	in	the	figures,	when	

we	 consider	 a	 trimodal	 random	 transverse	 field	
distribution (i.e. 0p ≠ ),	 a	finite	critical	 transverse	
field	 cΩ  also exists for 0p ≅ . The appearance of 
such	 a	 finite	 critical	 value	 cΩ  for , can be 
explained by the existence of a small cluster of zero 
transverse	field	sites,	which,	at	the	ground	state,	can	
not keep order in the system for anyΩ . On the other 
limit, if only a small fraction of spins is exposed 
to Ω (i.e. 1p ≅ ),	the	cluster	of	zero	transverse	field	
sites includes nearly all sites of the lattice. From 

the above limit behaviors obtained for 0p ≅ and
1p ≅ , one can reasonably expect that there appears 

a critical value *p  of the concentration of zero 
transverse	field	 sites	 ( * 0.4375p = ) showing two 
different behaviors of the system which depends on 
the range of p. 

Figure 1: The phase diagram (T/JB versusΩ ) of 
spin-1 random transverse Ising model in the simple 
cubic lattice for various p (from left to right, p=0, 

0.2, 0.4, 0.6, 0.8, 1).

Indeed, for *0 p p≤ ≤ , the cluster of zero transverse 
field	 sites	 is	 small	 and	 hence	 the	 order,	 at	T=0,	 is	
destroyed	beyond	a	finite	critical	value cΩ . But for

* 1p p≤ ≤ ,	 such	 a	 cluster	 is	 sufficiently	 large	 to	
keep order in the system at very low temperature, 
even	 in	 the	 limit	 of	 infinitely	 large	 values	 of	 the	
transverse	field.	Thus,	we	conclude	that	the	existence	
of	 a	 finite	 critical	 value	 cΩ at the ground state is 
related to the size of the cluster of zero transverse 
field	sites.
In	figures	2,	 3,	 6,	 7,	 the	 temperature	dependences	
of the transverse magnetizations as well as the 
parameter q ( 2q η= ) for the simple cubic lattice 
are	 depicted,	when	 the	 transverse	 field	 is	 fixed	 at	
some	 typical	 values.	 Finally,	 in	 figures	 	 4,	 5,	 8,	
and 9, the temperature dependences of the internal 

energy (
B

U
NJ
−

)	 and	 the	 magnetic	 specific	 heat 

(
B

C
k N ) are plotted for various p in the same system. 

We can see	 that,	 if	 the	 transverse	 field	 increases,	
then the absolute value of internal energy in the 
systems increases. On the other hand, the magnetic 

Mohammadi Kamrava  and Barati



165

specific	 heat	 is	 gradually	 depressed	 by	 increasing	
the	transverse	field	strengthΩ . It can also be seen 
that the jump at the critical temperature gradually 
disappears with the increasing value ofΩ .

Figure 2: The temperature dependencies of 
transverse magnetization

z

z
B

M
J
µ

=  for various p and
Ω=0.1

Figure 3: The temperature dependencies of 
2q η=  for various p andΩ=0.1

Figure 4: The internal energy (
B

U
NJ
−

)   versus 
temperature T/JB for various p andΩ=0.1

Figure 5: The magnetic specific heat (
B

C
k N ) versus 

T/JB for various p andΩ=0.1

Figure 6: The temperature dependencies of 

transverse magnetization
z

z
B

M
J
µ

=  for various p (from 
left to right, p=0, 0.2, 0.4, 0.6, 0.8, 1) andΩ=3

 

Figure 7: The temperature dependencies of 
2q η=  for various p (from left to right, p=0, 0.2, 

0.4, 0.6, 0.8, 1) andΩ=3
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Figure 8: The internal energy (
B

U
NJ
−

)   versus 

temperature T/Js for various p (from left to right, 
p=0, 0.2, 0.4, 0.6, 0.8, 1) andΩ=3

Figure 9:  The magnetic specific heat (
B

C
k N ) 

versus T/Js for various p (from left to right, p=0, 
0.2, 0.4, 0.6, 0.8, 1) andΩ=3
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