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Abstract:
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the 
simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, 
internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the 
concentration of the random transverse field.
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1. INTRODUCTION

Recently, a considerable attention has been paid 
to the investigation of the transverse Ising model 
(TIM). The main reason of such a great interest can 
be attributed to the fact that the TIM is very valuable 
model because of its different possible application. 
In fact, the TIM enables a simple explanation of 
the quantum properties of the hydrogen-bonded 
ferroelectrics, cooperative Jahn-Teller systems, 
as well as strongly anisotropic magnetic materials 
in the transverse field [see Ref.1 and references 
therein]. The TIM has been studied by high 
temperature expansions, Monte-Carlo methods, a 
method of combining the pair approximation with 
the discretized path integral representation, cluster 
approximation, renormalization group method, 
the effective-field theory (EFT) and EFT with 
correlations [2-12]. It has been found that the TIM 
has a finite temperature phase transition which can 
be suppressed to zero temperature where criticality 
still occurs for a certain value of the transverse field. 
Therefore, the TIM serves as a model of quantum 
critical phenomena at zero temperature, In addition 
to works on the two state spin systems, the spin-1 

transverse Ising model and higher spin cases have 
also received attention [13,14].
Another problem of growing interest is associated 
with the random transverse field Ising model 
(RTFIM). One of the interesting phenomena in the 
RTFIM is the occurrence of a tricritical behavior. 
The RTFIM has examined by the use of various 
techniques, such as mean field theory, Monte-Carlo 
simulations, renormalization group calculations, 
Bethe-Peirls approximation and effective-field 
theories (EFT) [15-22]. It is worth noting that the 
analysis of the RTFIM have been almost restricted 
to the simple spin- 1

2
 system. Only very recently, 

some interest has been directed to understand 
the more complicated systems in the presence of 
random fields (i.e. the transverse Ising model, the 
amorphous Ising ferromagnet, the Blume-Capel 
model and spin-S Ising model). It has been shown 
that a very rich critical behavior can be found in 
these systems and many interesting phenomena can 
appear (i.e. the re-entrance behavior or the existence 
of two tricritical points).        
The purpose of this paper is to investigate the effect 
of a transverse random field, distributed according a 
trimodal distribution (2), on the phase diagram and 
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magnetic properties of a simple cubic (z=6) lattice 
ferromagnetic Ising system consisting of magnetic 
atoms with spin-1.
This study is done using the effective-field theory 
(EFT) with correlations method. The equations are 
derived using a probability distribution method 
based on the use of exact Van der Waerden 
identities. As far as we know, such a study has not 
been yet carried out. Section 2, described the EFT 
with correlations and the formulation of EFT is 
applied to a three-dimensional lattice (simple cubic 
with z=6) consisting of spin-1 atoms. In section 3, 
we present our numerical results and discussions, 
such as the phase diagrams, the thermal variations 
of the transverse magnetization, the internal energy, 
the magnetic specific heat as a function of different 
values of p, the concentration of the random 
transverse field.

2. THEORY  AND  FORMULATION

The random transverse field Ising model is described 
by the following Hamiltonian:

 ( )z z x
B i j B i i

ij i
H J S S S= − − Ω∑ ∑              (1) 

where ,z x
i iS S are components of a spin-1 operator 

at site i, BJ is the exchange interaction at the 
bulk. The first and second summations are over 
nearest-neighbor sites and single sites located on 
the free space, respectively. The transverse field
( )B iΩ is assumed to have the trimodal probability 
distribution:
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where p denoted the fraction of spins not exposed to 
the transverse field .
The starting point of the statistics of our spin system 
is the relation proposed by Sa’-Barreto et al [7], 
which is generally given by: 
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where
1

Bk T
β = , ˆ

iO  is a spin operator function at 

the site i, iTr means the partial trace with respect 
to the lattice site i, if here represents an arbitrary 
function of spin variables except z

iS and x
iS at 

a site i and ...  indicates the canonical thermal 
average. iH includes all parts of H associated with 
the lattice site i and is given by:

( )z x
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with 	 z
i B j

j
A J S=∑ 	                                        (5) 

By the use of (3), the longitudinal and transverse 
site magnetizations for the spin-1 random transverse 
Ising model are given by, (with 1if = ),
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 With     ( )B iB = Ω                                  (8)

2 2
i iE B A= +                        (9)

Introducing the differential operator technique [23], 
equations (6) and (7) can be rewritten as:

0( ) ,iAz
i B xS e F x∇

==                   (10) 

0( ) ,iAx
i B xS e G x∇

==
                    (11)                                               

where
x
∂

∇ =
∂

is a differential operator (defined 

by ( ) ( )ae F x F x a∇ = + ). The functions 

( ), ( )B BF x G x are defined by: 
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In order to evaluate the above equations, for spin-1, 
we use the decoupling approximation:

2 2( ) ... ( ) ...z z z z z z
i j l i j lS S S S S S≅  (14)

For ...i j l≠ ≠ ≠ , we use the generalized but 
approximated Van der Waerden identity [24]: 
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With       2 2( ) ,z
iSη =                         (16)

then (10) and (11) are rewritten as: 
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where z is the coordination number, and for the 
simple cubic lattice z=6 .
Because of randomness of transverse fields, we 
should perform the random average of ( )B iΩ
with using the probability distribution function

(( ) )B iP Ω . We can define z z
i r

Sµ = and
x x

i r
Sµ =  and 

2 2( )z
i r

Sη = , where ...
r

denotes the transverse field average.
Thus, doing the random average, (17) and 
(18) can be transformed into the forms:                                
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On the other hand, for a spin S higher than 
1
2

S = , 

one has to evaluate the parameter η  (for 1
2

S =  

parameter η  is given by 1
2

η = ). It can be derived 

in the same way as z
iS  and x

iS by the use of (3): 
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Here, the function ( )BH x  for spin-1 is defined by:
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Where  2 2y B x= +                           (23)

and the functions ( )BF x and ( )BG x  and ( )BH x are 
obtained as follows:

( ) (( ) ) ( ) (( ) )B B i B B iF x P F x d= Ω Ω∫  (24)                                         

( ) (( ) ) ( ) (( ) )B B i B B iG x P G x d= Ω Ω∫          (25) 

( ) (( ) ) ( ) (( ) )B B i B B iH x P H x d= Ω Ω∫     (26)

The random averaged internal energyU is given by:

( )z z
i i S i ir r

U A S S
N

= − − Ω       (27)

where N is the number of magnetic atoms. 
Here, by substituting i if A= into (3), the 
first term of this relation can be written as:                       
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The expressions z
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It is clear that for the evaluation of averaged internal 
energyU , we must know ,z xµ µ  andη . Then these 
quantities can be easily obtained by solving (19)-
(21) numerically. Finally, the averaged magnetic 
specific heat can be determined from the relation:      

,UC
T
∂

=
∂                      (31)

3. SUMMARY  AND  DISCUSSION

 In this section, the results for the spin-1 random 
transverse Ising model are shown. At first, in Figure 
1, there are presented the phase diagrams in the

TΩ− plane for various values of p in the case of 
the simple cubic (z=6) lattice. From this figure we 
can see that the effect of a random transverse Ising 
model. Namely, the critical temperature gradually 
decreases from its Ising value at 0Ω = and rapidly 
vanishes when the transverse field approaches some 
critical cΩ  depending on the value of p. It can be 
also seen that the value of cΩ in spin-1 is greater than

cΩ  in spin- 1
2
 system. When the transverse field is 

bimodally distributed (p=0), the critical temperature 
decrease gradually from its value of ( 0)cT Ω =

( 3.5287c

B

T
J

= ), to vanish at some critical value of 

cΩ ( 5.2865c

BJ
Ω

= ). As shown in the figures, when 

we consider a trimodal random transverse field 
distribution (i.e. 0p ≠ ), a finite critical transverse 
field cΩ  also exists for 0p ≅ . The appearance of 
such a finite critical value cΩ  for , can be 
explained by the existence of a small cluster of zero 
transverse field sites, which, at the ground state, can 
not keep order in the system for anyΩ . On the other 
limit, if only a small fraction of spins is exposed 
to Ω (i.e. 1p ≅ ), the cluster of zero transverse field 
sites includes nearly all sites of the lattice. From 

the above limit behaviors obtained for 0p ≅ and
1p ≅ , one can reasonably expect that there appears 

a critical value *p  of the concentration of zero 
transverse field sites ( * 0.4375p = ) showing two 
different behaviors of the system which depends on 
the range of p. 

Figure 1: The phase diagram (T/JB versusΩ ) of 
spin-1 random transverse Ising model in the simple 
cubic lattice for various p (from left to right, p=0, 

0.2, 0.4, 0.6, 0.8, 1).

Indeed, for *0 p p≤ ≤ , the cluster of zero transverse 
field sites is small and hence the order, at T=0, is 
destroyed beyond a finite critical value cΩ . But for

* 1p p≤ ≤ , such a cluster is sufficiently large to 
keep order in the system at very low temperature, 
even in the limit of infinitely large values of the 
transverse field. Thus, we conclude that the existence 
of a finite critical value cΩ at the ground state is 
related to the size of the cluster of zero transverse 
field sites.
In figures 2, 3, 6, 7, the temperature dependences 
of the transverse magnetizations as well as the 
parameter q ( 2q η= ) for the simple cubic lattice 
are depicted, when the transverse field is fixed at 
some typical values. Finally, in figures   4, 5, 8, 
and 9, the temperature dependences of the internal 

energy (
B

U
NJ
−

) and the magnetic specific heat 

(
B

C
k N ) are plotted for various p in the same system. 

We can see that, if the transverse field increases, 
then the absolute value of internal energy in the 
systems increases. On the other hand, the magnetic 
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specific heat is gradually depressed by increasing 
the transverse field strengthΩ . It can also be seen 
that the jump at the critical temperature gradually 
disappears with the increasing value ofΩ .

Figure 2: The temperature dependencies of 
transverse magnetization

z

z
B

M
J
µ

=  for various p and
Ω=0.1

Figure 3: The temperature dependencies of 
2q η=  for various p andΩ=0.1

Figure 4: The internal energy (
B

U
NJ
−

)   versus 
temperature T/JB for various p andΩ=0.1

Figure 5: The magnetic specific heat (
B

C
k N ) versus 

T/JB for various p andΩ=0.1

Figure 6: The temperature dependencies of 

transverse magnetization
z

z
B

M
J
µ

=  for various p (from 
left to right, p=0, 0.2, 0.4, 0.6, 0.8, 1) andΩ=3

 

Figure 7: The temperature dependencies of 
2q η=  for various p (from left to right, p=0, 0.2, 

0.4, 0.6, 0.8, 1) andΩ=3
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Figure 8: The internal energy (
B

U
NJ
−

)   versus 

temperature T/Js for various p (from left to right, 
p=0, 0.2, 0.4, 0.6, 0.8, 1) andΩ=3

Figure 9:  The magnetic specific heat (
B

C
k N ) 

versus T/Js for various p (from left to right, p=0, 
0.2, 0.4, 0.6, 0.8, 1) andΩ=3
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