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Abstract:
In this work, several machine learning techniques are presented for nanofiltration modeling. According to the 
results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases 
with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of 
nanofiltration as a function of concentration, pH, pressure and also the experimental rejection. The results are 
in promising agreement with the experimental data taken from the literature. Six methods for modeling and 
prediction of rejection by nanofiltration membranes are presented in this study. The models have been trained 
and tested with a selected data set. Three defined matrices have been used to analyze the performance of the 
models. 
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1. INTRODUCTION

Nanofiltration (NF) is a membrane separation 
process between Ultrafiltration (UF) and reverse 
osmosis (RO). Nanofiltration membranes have been 
developed from several materials, providing many 
possibilities in comparison with RO.   Currently, 
application of nanofiltration is increasing for water 
treatment and gradually representing an appropriate 
alternative for RO in some specific applications [1]. 
NF membranes are believed to have individual pores 
ranging from 1 to 2 nm in diameter. NF membranes 
have a high separation degree for larger and low 
rejections for smaller ions. They provide high 
efficiencies for separation of organic molecules [2, 
3]. NF membranes are fabricated in a similar way 
as RO but with different materials and processing 
parameters to result in larger pore sizes [4].

In a system containing mobile ions, mass transport 
occurs as a result of driving forces consisting of 
diffusion, convection and ionic migration. Mass 
transfer through the membrane is described by 
three mechanisms consisting of convection and 
diffusion through the membrane and also electrical 
migration. Models used to describe this kind of 
transport are usually based on the extended Nernst-
Planck equation. The concentration of mobile ions 
and electrical potential vary in the direction of 
fluid flow due to a combination of electrostatic and 
hydrodynamic forces exerted on the moving ionic 
species in the flowing electrolyte solution.
At a fundamental level, NF is a very complex 
process and several models have been used for 
modeling its separation behavior [5]. These models 
can be divided into two main categories: irreversible 
thermodynamics (IT) and mechanistic models. 
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The fundamental models derived from irreversible 
thermodynamics are Kedem-Katchalsky and 
Spiegler-Kedem [6-8]. Membrane structure and 
the mechanism of transport are ignored in IT 
modeling approach. IT models have been employed 
in predicting the transport through Nanofiltration 
membranes for single and binary electrolyte systems 
[9, 10]. 
Mechanistic models implement a conceptual 
difference in the modeling approach. The main 
advantage of these models is that the model 
parameters are better correlated to the electrical 
and structural properties of the membrane. Many 
charged transport theories have been proposed [11]. 
Teorell-Meyer-Sievers (TMS) model uses a simple 
equation for mass transfer.  However, the range of 
TMS validation is limited because the assumption of 
uniform distribution of ions, fixed charge and electric 
potential, especially for large pore radii is not valid. 
The space charge (SC) model initially presented 
by Osterele et al. [12-14], is more applicable to 
predict the performance of NF membranes; because 
SC model assumes straight capillaries containing 
charge on their surfaces. Poisson-Boltzmann is 
the main equation in SC, which assumes the radial 
distribution of ionic concentration and electrical 
potential. In this model, the Nernst-Planck equation 
is used for ionic and the Navier-Stokes equation 
for momentum transport.  This modeling approach 
has been used to explain electrokinetic phenomena 
regarding charged capillaries such as electrical 
conductivity and streaming potential [15-17].
Two approaches are used to predict rejection in 
SC model. One approach is direct calculation. 
Ruckenstein et al., calculated electrolyte rejection 
by using SC model, and electro-viscous effect was 
investigated to compute the electrical influence on 
volumetric flow. Probstein et al. proposed a theory 
to apply the Hagen-Poiseuille equation instead of 
Navier-Stokes to decrease the amount of calculations 
[18-20]. Simon and Kedem used the Navier-Stokes 
equation on pores with constant fixed charge and 
calculated the profile of velocity and rejection [21]. 
The analytical method is presented by Smit et al. 
[22, 23]. They used the SC model to derive the 
membrane parameters such as solute permeability 
and reflection coefficient [23]. They proposed an 

estimation to calculate membrane parameters using 
the method of Levine [24]. The assumptions in this 
model are applicable when surface charge density 
is negligible and pores are very narrow, and so 
suitable in usual NF conditions. Several versions of 
this model have been proposed [25].
The above mentioned models were obtained from 
physical descriptions of NF process. Typically, these 
models have complex mathematical and expensive 
computational requirements and demand detailed 
information on NF parameters and processing 
conditions [26, 27].  So, it is necessary to find an 
alternative means for predicting process efficiency 
by using available experimental data and extending 
it to the unavailable data. Artificial neural network 
(ANN) is able to model the highly nonlinear and 
complex systems incorporating NF membranes.
Gas condensate processing and handling equipments, 
have problems regarding corrosion as a result of ions 
such as chloride dispersed throughout the organic 
phase in the form of micro- and nano-emulsions. 
This study aims to investigate the modeling of 
chloride ion removal from gas condensates using 
nanofiltration membrane separation process and 
the utilization of machine learning methods in 
order to predict the performance of nanofiltration 
membranes. 

2. MODELING

In this work, special functions are used for 
predicting rejection of nanofiltration, some of which 
are compatible with our data type with default 
parameters. Specific algorithms are explained in the 
next sections which are used in this regard.

3. ALGORITHMS

3.1. Least median square regression

The least median squared linear regression algorithm 
uses the linear regression class to make predictions. 
The functions of least squared regression method 
are produced from random data samples. The least 
squared regression with the minimum median 
squared error is selected as the ultimate model. This 

Sabbaghi, et al.



187

algorithm is based on the work by Rousseeuw and 
Leroy [28].

3.2. Support vector machine regression

Support vector machines (SVMs) are systems of 
related and managed learning methods used for 
regression and classification. Data is viewed as two 
sets of vectors in an n-dimensional space; an SVM 
will build a segregated hyper-plane in that space, 
which makes the largest margin between the two 
data sets.  For calculating the margin, two parallel 
hyper-planes are constructed, one at each side of 
the segregated hyper-plane. Naturally, excellent 
separation is achieved by the hyper-plane that has 
the largest distance from the adjacent data points 
of both sets; because in general, the greater the 
margin the better the generalization error of the 
classifier. The parameters can be learned by means 
of different algorithms. The algorithm is chosen 
by setting the RegOptimizer. The most proper 
algorithm (RegSMOlmproved) is based on the 
work by Shevade, et al. [29] and used as the default 
RegOptimizer. The benefit of SVM regression is 
due to its general prediction accuracy.

3.3. IBK 

The k-nearest neighbor’s algorithm (KNN) is 
a regression technique that classifies objects 
according to the closest training examples in 
the feature space. It is a kind of instance-based 
learning, or lazy learning where the function is 
only approximated locally and all computational 
operations are delayed until regression. The KNN 
method is used for regression by simply assigning 
the property value for the item to be the average of 
the values of its k nearest neighbors. It is helpful 
to weigh the contributions of the neighbors; 
therefore, the closest neighbors give more to the 
average than the neighbors more distant. The 
objects are characterized by position vectors in a 
multidimensional feature space, in order to identify 
the neighbors. In the testing phase, the test example 
is represented like a vector in the feature space. 
Distances from this vector from all stored vectors 
are calculated and the k closest samples are chosen 
to find out the actual magnitude of the test case. This 

algorithm is sensitive to data organization. Usually, 
larger values of k decrease the influence of noise. 
Heuristic techniques like cross-validation can help 
to set a proper k value.

3.4. Multilayered perceptron

The multilayered perceptron ANN is a type of 
machine learning method [30]. Back propagation 
algorithm [30] with a learning rate equal to 0.3 
is utilized in this study. All the neurons have a 
sigmoid activation function. A momentum of 0.1 
progressively decreasing up to 0.0001 has been 
used to escape local minima on the error surface.

3.5. M5P

M5P is a method of regression that combines a 
conventional decision tree with the possibility of 
linear regression functions at the nodes [31]. A 
decision-tree induction algorithm is used to build 
an initial tree; a splitting criterion is used instead of 
maximizing the information gain at each inner node.  
This procedure minimizes the intra-subset variation 
in the class values down each branch. A sharp 
discontinuity between the sub-trees is harmful, so 
a smoothing procedure is applied. This method 
combines the leaf model prediction with every 
node along the path back to the root, smoothing 
it at each node by combining with the predicted 
value from the linear model. Methods developed 
by Breiman et al. [32] for their CART system are 
adopted. All enumerated attributes are turned into 
binary variables; therefore, all the splits in M5P 
are binary. As for missing values, M5P applies a 
method of “surrogate splitting” that gets another 
attribute to split instead of the original location and 
employs it in return. In the training section, M5P 
applies as surrogate attribute the class magnitude 
believing that this is the attribute that should be 
associated with the one used for splitting. At the 
end of the splitting procedure, all missing values are 
changed by the average values of the corresponding 
attributes of the training example. In the testing part, 
the average value of that attribute for all training 
instances that reach the node are used instead of an 
unknown attribute value. M5P produces compact 
and relatively comprehensible models.
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Table	1: The analysis of correlation coefficient 

Method Least	Med	Sq.	 SMOreg Multilayer
Perceptron IBK M5P Regression	By	

Discretization
Correlation
Coefficient 0.8900	 0.9100	 0.9620	 0.9655	 0.9600	 0.9400	

Table	2: The analysis of Mean Absolute Error

Method Least	Med	Sq.	 SMOreg Multilayer
Perceptron IBK M5P Regression	By	

Discretization
Mean	Absolute	

Error 8.67	 7.91	 5.82	 4.65	 5.11	 5.56	

Table	3: The analysis of Root Mean Squared Error. 

Method Least	Med	Sq.	 SMOreg Multilayer
Perceptron IBK M5P Regression	By	

Discretization
Root	Mean	Squared	

Error 11.83 9.79	 7.12	 6.06	 6.37	 7.30	

Sabbaghi, et al.

3.6. Regression by discretization

Regression by discretization is a regression scheme 
that uses each classifier on a copy of the data that 
has the class attribute discredited. The expected 
value of the mean class value for each discredited 
interval is the predicted value. This class supports 
conditional density estimation by constructing a 
uni-variate density estimator from the target values 
in the training data. The weight of training data is 
determined by the class probabilities. 

4. EVALUATION MATRICES

Special metrics are employed to evaluate the 
performance of the models. These matrices are 
explained in the next section. 

4.1. Root mean squared error

Mean squared error (MSE), is a predictive 
regression model that is a different way to quantify 
the distinction between set of actual (target) values, 
xt and set of predicted values, xp. The root mean 
squared error (RMSE) is defined as: the mean 
absolute error averages of each error neglecting its 
sign. Mean-squared error tends to exaggerate the 
effect of outliers, but absolute error does not have 
this performance. All error values are treated evenly 
according to their magnitude. 

4.2. The correlation coefficient

The correlation coefficient is a measure of how 
trends in actual values are followed by trends in the 
predicted ones. It is an evaluation of how well the 

predicted values from a predicted model fit the real-
life data. The correlation coefficient is a magnitude 
in the range of -1 and 1. If the predicted and actual 
values are independent and no correlation exists 
between them, the correlation coefficient is close 
to zero. If the strength of the relationship between 
the actual and predicted values increases, so does 
the correlation coefficient. An ideal fit gives a 
coefficient equal to unity. Opposite but correlated 
trends result in a correlation coefficient magnitude 
limit to -1. Negative correlation values are not 
typically expected in the learning of a predictive 
model. 

5. RESULTS  AND  DISCUSSION

5.1. Error analysis

The experimental data used for training the models 
is taken from Bowen et al. [33]. The error analysis 
for different methods is listed in Tables 1-3. Table 
1 shows the analysis of correlation coefficient for 
various methods. An ideal value for correlation 
coefficient is equal to 1. Closer to unity, values 
show better agreement between predicted and 
experimental data and closer to zero is an indication 
of less agreement between them. According to 
Table 1, the best value of correlation coefficient 
for this data set is obtained from KNN method. 
Other methods also indicate good prediction and 
negligible errors. 
Table 2 indicates the mean absolute error for 
various methods based on the selected data set. 
Zero is the best value for mean absolute error and 
more proximity to zero indicates more accuracy of 
predictions. Table 2 shows appropriate values for 
this error regarding all methods in general. Among 
these methods, the most convenient value is derived 
from KNN just like the correlation coefficient. The 
best value for mean absolute error regarding the 
selected data set is analyzed and the KNN method 
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shows the most accurate predictions.
Table 3 represents the results of root mean squared 
error for various methods based on the selected 
data set. Root mean squared error is the rejection 
like mean absolute error and the ideal value for this 
error is zero. KNN method has the best prediction 
for this dataset according to this error and the results 
are shown in Table 2. 

33.	Bowen,	W.,	Jones,	M.		Welfoot,	J.	Yousef,	H.	(2000)	Predicting	salt	rejections at nanofiltration membranes using artificial

neural	networks,	Desalination	129,	147–162.	

Figure	1.	KNN	predictions	for	pH=4.	
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Figure	3.	KNN	predictions	for	pH=9	

50

55

60

65

70

75

80

85

90

95

0 0.5 1 1.5 2 2.5 3

R
ej

ec
tio

n 
(%

)

Pressure (bar)

0.003 M (Exp)

0.01 M (Exp)

.01 M (perdiction)

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

R
ej

ec
tio

n 
(%

)

Pressure (bar)

0.01 M (Exp)

0.1 M (Exp)

0.1 M (perdiction)

Figure	2.	KNN	predictions	for	pH=6.25	

Figure	3.	KNN	predictions	for	pH=9	

50

55

60

65

70

75

80

85

90

95

0 0.5 1 1.5 2 2.5 3

R
ej

ec
tio

n 
(%

)

Pressure (bar)

0.003 M (Exp)

0.01 M (Exp)

.01 M (perdiction)

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

R
ej

ec
tio

n 
(%

)

Pressure (bar)

0.01 M (Exp)

0.1 M (Exp)

0.1 M (perdiction)

Figure 3: KNN predictions for pH=9
Figure 1: KNN predictions for pH=4

Figure 2: KNN predictions for pH=6.25

Figures 1 to 3 illustrate the results predicted for the 
rejection as a function of the concentration and pH 
based on the KNN model. The KNN model is able 
to account for the nanofiltration rejection at low and 
high concentrations. The KNN model also accounts 
very well for the change of pH. The predicted values 
were calculated at several pHs to ensure that the 
model was able to predict well using experimental 
data. In addition, training was performed by using 
the experimental data and the model was validated 
for some experimental data obtained at this range 
[33]. It must be noted that R is the experimental and 
R’ is the predicted rejection.

6. CONCLUSIONS

Rejection is investigated statistically as an index of 
membrane separation efficiency. The results show 
that rejection increases with an increase in pressure. 
At higher concentrations, nanofiltration rejections 
are lower than that of lower concentrations, since the 
membrane has a limited capacity for ion separation. 

International Journal of Nanoscience and Nanotechnology
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Machine Learning methods have been used for 
predicting the value of the rejection in nanofiltration. 
This application is important because the ability for 
correct predictions can help to select the best model. 
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