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Abstract:
In this work, several machine learning techniques are presented for nanofiltration modeling. According to the 
results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases 
with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of 
nanofiltration as a function of concentration, pH, pressure and also the experimental rejection. The results are 
in promising agreement with the experimental data taken from the literature. Six methods for modeling and 
prediction of rejection by nanofiltration membranes are presented in this study. The models have been trained 
and tested with a selected data set. Three defined matrices have been used to analyze the performance of the 
models. 
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1.	INTRODUCTION

Nanofiltration	 (NF)	 is	 a	 membrane	 separation	
process	 between	 Ultrafiltration	 (UF)	 and	 reverse	
osmosis	(RO).	Nanofiltration	membranes	have	been	
developed	from	several	materials,	providing	many	
possibilities	 in	 comparison	 with	 RO.	 	 Currently,	
application	of	nanofiltration	is	increasing	for	water	
treatment	and	gradually	representing	an	appropriate	
alternative	for	RO	in	some	specific	applications	[1].	
NF	membranes	are	believed	to	have	individual	pores	
ranging	from	1	to	2	nm	in	diameter.	NF	membranes	
have	 a	 high	 separation	 degree	 for	 larger	 and	 low	
rejections	 for	 smaller	 ions.	 They	 provide	 high	
efficiencies	for	separation	of	organic	molecules	[2,	
3].	NF	membranes	are	fabricated	in	a	similar	way	
as	RO	but	with	different	materials	and	processing	
parameters	to	result	in	larger	pore	sizes	[4].

In	a	system	containing	mobile	ions,	mass	transport	
occurs	 as	 a	 result	 of	 driving	 forces	 consisting	 of	
diffusion,	 convection	 and	 ionic	 migration.	 Mass	
transfer	 through	 the	 membrane	 is	 described	 by	
three	 mechanisms	 consisting	 of	 convection	 and	
diffusion	through	the	membrane	and	also	electrical	
migration.	 Models	 used	 to	 describe	 this	 kind	 of	
transport	are	usually	based	on	the	extended	Nernst-
Planck	equation.	The	concentration	of	mobile	ions	
and	 electrical	 potential	 vary	 in	 the	 direction	 of	
fluid	flow	due	to	a	combination	of	electrostatic	and	
hydrodynamic	forces	exerted	on	 the	moving	 ionic	
species	in	the	flowing	electrolyte	solution.
At	 a	 fundamental	 level,	 NF	 is	 a	 very	 complex	
process	 and	 several	 models	 have	 been	 used	 for	
modeling	its	separation	behavior	[5].	These	models	
can	be	divided	into	two	main	categories:	irreversible	
thermodynamics	 (IT)	 and	 mechanistic	 models.	
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The	fundamental	models	derived	from	irreversible	
thermodynamics	 are	 Kedem-Katchalsky	 and	
Spiegler-Kedem	 [6-8].	 Membrane	 structure	 and	
the	 mechanism	 of	 transport	 are	 ignored	 in	 IT	
modeling	approach.	IT	models	have	been	employed	
in	 predicting	 the	 transport	 through	 Nanofiltration	
membranes	for	single	and	binary	electrolyte	systems	
[9,	10].	
Mechanistic	 models	 implement	 a	 conceptual	
difference	 in	 the	 modeling	 approach.	 The	 main	
advantage	 of	 these	 models	 is	 that	 the	 model	
parameters	 are	 better	 correlated	 to	 the	 electrical	
and	 structural	 properties	 of	 the	 membrane.	Many	
charged	transport	theories	have	been	proposed	[11].	
Teorell-Meyer-Sievers	(TMS)	model	uses	a	simple	
equation	for	mass	transfer.		However,	the	range	of	
TMS	validation	is	limited	because	the	assumption	of	
uniform	distribution	of	ions,	fixed	charge	and	electric	
potential,	especially	for	large	pore	radii	is	not	valid.	
The	 space	 charge	 (SC)	 model	 initially	 presented	
by	 Osterele	 et	 al.	 [12-14],	 is	 more	 applicable	 to	
predict	the	performance	of	NF	membranes;	because	
SC	 model	 assumes	 straight	 capillaries	 containing	
charge	 on	 their	 surfaces.	 Poisson-Boltzmann	 is	
the	main	equation	in	SC,	which	assumes	the	radial	
distribution	 of	 ionic	 concentration	 and	 electrical	
potential.	In	this	model,	the	Nernst-Planck	equation	
is	 used	 for	 ionic	 and	 the	 Navier-Stokes	 equation	
for	momentum	transport.		This	modeling	approach	
has	been	used	to	explain	electrokinetic	phenomena	
regarding	 charged	 capillaries	 such	 as	 electrical	
conductivity	and	streaming	potential	[15-17].
Two	 approaches	 are	 used	 to	 predict	 rejection	 in	
SC	 model.	 One	 approach	 is	 direct	 calculation.	
Ruckenstein	 et	 al.,	 calculated	 electrolyte	 rejection	
by	using	SC	model,	and	electro-viscous	effect	was	
investigated	to	compute	the	electrical	influence	on	
volumetric	flow.	Probstein	et	al.	proposed	a	theory	
to	 apply	 the	Hagen-Poiseuille	 equation	 instead	 of	
Navier-Stokes	to	decrease	the	amount	of	calculations	
[18-20].	Simon	and	Kedem	used	the	Navier-Stokes	
equation	 on	 pores	with	 constant	 fixed	 charge	 and	
calculated	the	profile	of	velocity	and	rejection	[21].	
The	 analytical	method	 is	 presented	 by	Smit	 et	 al.	
[22,	 23].	 They	 used	 the	 SC	 model	 to	 derive	 the	
membrane parameters such as solute permeability 
and	 reflection	 coefficient	 [23].	 They	 proposed	 an	

estimation to calculate membrane parameters using 
the	method	of	Levine	[24].	The	assumptions	in	this	
model	are	applicable	when	surface	charge	density	
is	 negligible	 and	 pores	 are	 very	 narrow,	 and	 so	
suitable	in	usual	NF	conditions.	Several	versions	of	
this	model	have	been	proposed	[25].
The	above	mentioned	models	were	obtained	 from	
physical	descriptions	of	NF	process.	Typically,	these	
models	have	complex	mathematical	and	expensive	
computational	 requirements	 and	 demand	 detailed	
information	 on	 NF	 parameters	 and	 processing	
conditions	 [26,	27].	 	So,	 it	 is	necessary	 to	find	an	
alternative	means	for	predicting	process	efficiency	
by	using	available	experimental	data	and	extending	
it	to	the	unavailable	data.	Artificial	neural	network	
(ANN)	 is	 able	 to	model	 the	 highly	 nonlinear	 and	
complex	systems	incorporating	NF	membranes.
Gas	condensate	processing	and	handling	equipments,	
have	problems	regarding	corrosion	as	a	result	of	ions	
such	 as	 chloride	 dispersed	 throughout	 the	 organic	
phase	 in	 the	 form	 of	micro-	 and	 nano-emulsions.	
This	 study	 aims	 to	 investigate	 the	 modeling	 of	
chloride	 ion	 removal	 from	 gas	 condensates	 using	
nanofiltration	 membrane	 separation	 process	 and	
the	 utilization	 of	 machine	 learning	 methods	 in	
order	 to	 predict	 the	 performance	 of	 nanofiltration	
membranes. 

2.	MODELING

In	 this	 work,	 special	 functions	 are	 used	 for	
predicting	rejection	of	nanofiltration,	some	of	which	
are	 compatible	 with	 our	 data	 type	 with	 default	
parameters.	Specific	algorithms	are	explained	in	the	
next	sections	which	are	used	in	this	regard.

3.	ALGORITHMS

3.1.	Least	median	square	regression

The	least	median	squared	linear	regression	algorithm	
uses	the	linear	regression	class	to	make	predictions.	
The	 functions	 of	 least	 squared	 regression	method	
are	produced	from	random	data	samples.	The	least	
squared	 regression	 with	 the	 minimum	 median	
squared	error	is	selected	as	the	ultimate	model.	This	
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algorithm	is	based	on	the	work	by	Rousseeuw	and	
Leroy	[28].

3.2.	Support	vector	machine	regression

Support	 vector	 machines	 (SVMs)	 are	 systems	 of	
related	 and	 managed	 learning	 methods	 used	 for	
regression	and	classification.	Data	is	viewed	as	two	
sets	of	vectors	in	an	n-dimensional	space;	an	SVM	
will	 build	 a	 segregated	 hyper-plane	 in	 that	 space,	
which	makes	 the	 largest	margin	 between	 the	 two	
data	sets.		For	calculating	the	margin,	two	parallel	
hyper-planes	 are	 constructed,	 one	 at	 each	 side	 of	
the	 segregated	 hyper-plane.	 Naturally,	 excellent	
separation	 is	achieved	by	 the	hyper-plane	 that	has	
the	 largest	 distance	 from	 the	 adjacent	 data	 points	
of	 both	 sets;	 because	 in	 general,	 the	 greater	 the	
margin	 the	 better	 the	 generalization	 error	 of	 the	
classifier.	The	parameters	can	be	learned	by	means	
of	 different	 algorithms.	 The	 algorithm	 is	 chosen	
by	 setting	 the	 RegOptimizer.	 The	 most	 proper	
algorithm	 (RegSMOlmproved)	 is	 based	 on	 the	
work	by	Shevade,	et	al.	[29]	and	used	as	the	default	
RegOptimizer.	 The	 benefit	 of	 SVM	 regression	 is	
due	to	its	general	prediction	accuracy.

3.3.	IBK	

The	 k-nearest	 neighbor’s	 algorithm	 (KNN)	 is	
a	 regression	 technique	 that	 classifies	 objects	
according	 to	 the	 closest	 training	 examples	 in	
the	 feature	 space.	 It	 is	 a	 kind	 of	 instance-based	
learning,	 or	 lazy	 learning	 where	 the	 function	 is	
only	 approximated	 locally	 and	 all	 computational	
operations	are	delayed	until	 regression.	The	KNN	
method	is	used	for	regression	by	simply	assigning	
the	property	value	for	the	item	to	be	the	average	of	
the	 values	 of	 its	 k	 nearest	 neighbors.	 It	 is	 helpful	
to	 weigh	 the	 contributions	 of	 the	 neighbors;	
therefore,	 the	 closest	 neighbors	 give	 more	 to	 the	
average	 than	 the	 neighbors	 more	 distant.	 The	
objects	 are	 characterized	 by	 position	 vectors	 in	 a	
multidimensional	feature	space,	in	order	to	identify	
the	neighbors.	In	the	testing	phase,	the	test	example	
is	 represented	 like	 a	 vector	 in	 the	 feature	 space.	
Distances	 from	 this	vector	 from	all	 stored	vectors	
are	calculated	and	the	k	closest	samples	are	chosen	
to	find	out	the	actual	magnitude	of	the	test	case.	This	

algorithm	is	sensitive	to	data	organization.	Usually,	
larger	values	of	k	decrease	 the	 influence	of	noise.	
Heuristic	techniques	like	cross-validation	can	help	
to	set	a	proper	k	value.

3.4.	Multilayered	perceptron

The	 multilayered	 perceptron	 ANN	 is	 a	 type	 of	
machine	 learning	 method	 [30].	 Back	 propagation	
algorithm	 [30]	 with	 a	 learning	 rate	 equal	 to	 0.3	
is	 utilized	 in	 this	 study.	 All	 the	 neurons	 have	 a	
sigmoid	 activation	 function.	A	 momentum	 of	 0.1	
progressively	 decreasing	 up	 to	 0.0001	 has	 been	
used	to	escape	local	minima	on	the	error	surface.

3.5. M5P

M5P	 is	 a	 method	 of	 regression	 that	 combines	 a	
conventional	 decision	 tree	 with	 the	 possibility	 of	
linear	 regression	 functions	 at	 the	 nodes	 [31].	 A	
decision-tree	 induction	 algorithm	 is	 used	 to	 build	
an	initial	tree;	a	splitting	criterion	is	used	instead	of	
maximizing	the	information	gain	at	each	inner	node.		
This	procedure	minimizes	the	intra-subset	variation	
in	 the	 class	 values	 down	 each	 branch.	 A	 sharp	
discontinuity	between	 the	 sub-trees	 is	 harmful,	 so	
a	 smoothing	 procedure	 is	 applied.	 This	 method	
combines	 the	 leaf	 model	 prediction	 with	 every	
node	 along	 the	 path	 back	 to	 the	 root,	 smoothing	
it	 at	 each	 node	 by	 combining	 with	 the	 predicted	
value	 from	 the	 linear	 model.	 Methods	 developed	
by	Breiman	et	al.	 [32]	 for	 their	CART	system	are	
adopted.	All	 enumerated	 attributes	 are	 turned	 into	
binary	 variables;	 therefore,	 all	 the	 splits	 in	 M5P	
are	 binary.	As	 for	missing	 values,	M5P	 applies	 a	
method	 of	 “surrogate	 splitting”	 that	 gets	 another	
attribute	to	split	instead	of	the	original	location	and	
employs	 it	 in	 return.	 In	 the	 training	 section,	M5P	
applies	 as	 surrogate	 attribute	 the	 class	magnitude	
believing	 that	 this	 is	 the	 attribute	 that	 should	 be	
associated	 with	 the	 one	 used	 for	 splitting.	At	 the	
end	of	the	splitting	procedure,	all	missing	values	are	
changed	by	the	average	values	of	the	corresponding	
attributes	of	the	training	example.	In	the	testing	part,	
the	 average	 value	 of	 that	 attribute	 for	 all	 training	
instances	that	reach	the	node	are	used	instead	of	an	
unknown	 attribute	 value.	 M5P	 produces	 compact	
and	relatively	comprehensible	models.
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Table	1: The analysis of correlation coefficient 

Method Least	Med	Sq.	 SMOreg Multilayer
Perceptron IBK M5P Regression	By	

Discretization
Correlation
Coefficient 0.8900	 0.9100	 0.9620	 0.9655	 0.9600	 0.9400	

Table	2: The analysis of Mean Absolute Error

Method Least	Med	Sq.	 SMOreg Multilayer
Perceptron IBK M5P Regression	By	

Discretization
Mean	Absolute	

Error 8.67	 7.91	 5.82	 4.65	 5.11	 5.56	

Table	3: The analysis of Root Mean Squared Error. 

Method Least	Med	Sq.	 SMOreg Multilayer
Perceptron IBK M5P Regression	By	

Discretization
Root	Mean	Squared	

Error 11.83 9.79	 7.12	 6.06	 6.37	 7.30	

Sabbaghi, et al.

3.6.	Regression	by	discretization

Regression	by	discretization	is	a	regression	scheme	
that	uses	each	classifier	on	a	copy	of	 the	data	that	
has	 the	 class	 attribute	 discredited.	 The	 expected	
value	of	 the	mean	class	value	for	each	discredited	
interval	 is	 the	predicted	value.	This	class	supports	
conditional	 density	 estimation	 by	 constructing	 a	
uni-variate	density	estimator	from	the	target	values	
in	the	training	data.	The	weight	of	 training	data	is	
determined	by	the	class	probabilities.	

4.	EVALUATION	MATRICES

Special	 metrics	 are	 employed	 to	 evaluate	 the	
performance	 of	 the	 models.	 These	 matrices	 are	
explained	in	the	next	section.	

4.1.	Root	mean	squared	error

Mean	 squared	 error	 (MSE),	 is	 a	 predictive	
regression	model	that	is	a	different	way	to	quantify	
the	distinction	between	set	of	actual	(target)	values,	
xt	 and	 set	 of	 predicted	values,	 xp.	The	 root	mean	
squared	 error	 (RMSE)	 is	 defined	 as:	 the	 mean	
absolute	error	averages	of	each	error	neglecting	its	
sign.	 Mean-squared	 error	 tends	 to	 exaggerate	 the	
effect	of	outliers,	but	absolute	error	does	not	have	
this	performance.	All	error	values	are	treated	evenly	
according	to	their	magnitude.	

4.2.	The	correlation	coefficient

The	 correlation	 coefficient	 is	 a	 measure	 of	 how	
trends	in	actual	values	are	followed	by	trends	in	the	
predicted	ones.	It	is	an	evaluation	of	how	well	the	

predicted	values	from	a	predicted	model	fit	the	real-
life	data.	The	correlation	coefficient	is	a	magnitude	
in	the	range	of	-1	and	1.	If	the	predicted	and	actual	
values	 are	 independent	 and	 no	 correlation	 exists	
between	 them,	 the	 correlation	 coefficient	 is	 close	
to	zero.	If	the	strength	of	the	relationship	between	
the	 actual	 and	 predicted	 values	 increases,	 so	 does	
the	 correlation	 coefficient.	 An	 ideal	 fit	 gives	 a	
coefficient	 equal	 to	 unity.	Opposite	 but	 correlated	
trends	result	in	a	correlation	coefficient	magnitude	
limit	 to	 -1.	 Negative	 correlation	 values	 are	 not	
typically	 expected	 in	 the	 learning	 of	 a	 predictive	
model.	

5.	RESULTS		AND		DISCUSSION

5.1. Error analysis

The	experimental	data	used	for	training	the	models	
is	taken	from	Bowen	et	al.	[33].	The	error	analysis	
for	different	methods	is	listed	in	Tables	1-3.	Table	
1	 shows	 the	 analysis	 of	 correlation	 coefficient	 for	
various	 methods.	 An	 ideal	 value	 for	 correlation	
coefficient	 is	 equal	 to	 1.	 Closer	 to	 unity,	 values	
show	 better	 agreement	 between	 predicted	 and	
experimental	data	and	closer	to	zero	is	an	indication	
of	 less	 agreement	 between	 them.	 According	 to	
Table	 1,	 the	 best	 value	 of	 correlation	 coefficient	
for	 this	 data	 set	 is	 obtained	 from	 KNN	 method.	
Other	 methods	 also	 indicate	 good	 prediction	 and	
negligible errors. 
Table	 2	 indicates	 the	 mean	 absolute	 error	 for	
various	 methods	 based	 on	 the	 selected	 data	 set.	
Zero	is	the	best	value	for	mean	absolute	error	and	
more	proximity	to	zero	indicates	more	accuracy	of	
predictions.	 Table	 2	 shows	 appropriate	 values	 for	
this	error	regarding	all	methods	in	general.	Among	
these	methods,	the	most	convenient	value	is	derived	
from	KNN	just	like	the	correlation	coefficient.	The	
best	 value	 for	 mean	 absolute	 error	 regarding	 the	
selected	data	set	is	analyzed	and	the	KNN	method	
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shows	the	most	accurate	predictions.
Table	3	represents	the	results	of	root	mean	squared	
error	 for	 various	 methods	 based	 on	 the	 selected	
data	 set.	Root	mean	 squared	 error	 is	 the	 rejection	
like	mean	absolute	error	and	the	ideal	value	for	this	
error	is	zero.	KNN	method	has	the	best	prediction	
for	this	dataset	according	to	this	error	and	the	results	
are	shown	in	Table	2.	

33.	Bowen,	W.,	Jones,	M.		Welfoot,	J.	Yousef,	H.	(2000)	Predicting	salt	rejections at nanofiltration membranes using artificial

neural	networks,	Desalination	129,	147–162.	

Figure	1.	KNN	predictions	for	pH=4.	
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Figure	1: KNN predictions for pH=4

Figure	2: KNN predictions for pH=6.25

Figures	1	to	3	illustrate	the	results	predicted	for	the	
rejection	as	a	function	of	the	concentration	and	pH	
based	on	the	KNN	model.	The	KNN	model	is	able	
to	account	for	the	nanofiltration	rejection	at	low	and	
high	concentrations.	The	KNN	model	also	accounts	
very	well	for	the	change	of	pH.	The	predicted	values	
were	 calculated	 at	 several	 pHs	 to	 ensure	 that	 the	
model	was	able	to	predict	well	using	experimental	
data.	 In	addition,	 training	was	performed	by	using	
the	experimental	data	and	the	model	was	validated	
for	 some	 experimental	 data	 obtained	 at	 this	 range	
[33].	It	must	be	noted	that	R	is	the	experimental	and	
R’	is	the	predicted	rejection.

6.	CONCLUSIONS

Rejection	 is	 investigated	statistically	as	an	 index	of	
membrane	 separation	 efficiency.	 The	 results	 show	
that	rejection	increases	with	an	increase	in	pressure.	
At	 higher	 concentrations,	 nanofiltration	 rejections	
are	lower	than	that	of	lower	concentrations,	since	the	
membrane	has	a	limited	capacity	for	ion	separation.	

International	Journal	of	Nanoscience	and	Nanotechnology
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Machine	 Learning	 methods	 have	 been	 used	 for	
predicting	the	value	of	the	rejection	in	nanofiltration.	
This	application	is	important	because	the	ability	for	
correct	predictions	can	help	to	select	the	best	model.	
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