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Abstract  
   The Narumi-Katayama index is the first topological index defined by the product of some graph 

theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of 

the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, 

we investigate some properties of this polynomial for graphs and then, we obtain this polynomial for 

some composite graphs such as splice, link, join, composition and Cartesian product of two graphs. 

Finally, using our results, we compute this polynomial for some nanostructures such as dendrimers and 

the chain of fullerenes. 

Keywords: Narumi-Katayama polynomial, Coefficients of a polynomial, Nanostar dendrimers, 

Fullerenes.  

 

1. INRODUCTION  

   During this paper, we suppose that G is a 

simple, connected graph. Specifically, let 

G = (V (G), E(G)) be a graph with vertex 

set V (G) = {v1, …, vn} of order n and the 

edge set E(G). For graph theoretic 

terminology we follow [1]. We denote the 

degree of a vertex v in G by d(v) or dG(v), 

which is the number of edges incident to v. 

An r-regular graph is a graph such that the 

degree of each vertex is r. A graph G is 

complete if there is an edge between every 

pair of the vertices of G, i.e. a graph G is 

called complete if any two different 

vertices of G are adjacent. A complete 

graph on n vertices is denoted by Kn. A 

graph is called bipartite if its vertex set can 

be partitioned into two subsets X and Y 

such that every edge of G has one endpoint 

in X and the other endpoint in Y. In the 

case which |X| = n and |Y| = m, we denote 

the complete bipartite graph by Kn,m. A 

path Pn is a sequence of vertices v1, …, vn 

such that each vi is adjacent to vi+1, for i = 

1, …, n-1. The path Pn with one more edge 

vnv1 is called a n-cycle. A topological index 

is a number invariant under 

automorphisms of the graph under 

consideration. In [2] Narumi and 

Katayama considered the product of d(v) 

over all degrees of vertices in G as "simple 

topological index". Then the papers, 

mostly used from the name "Narumi-

Katayama index" for this index. So we use 

from it in this paper, too. Also we denote 

the Narumi-Katayama index by NK. Thus, 

if G is a graph, then NK(G) = vV(G) 

dG(v). In [3, 4], the authors investigated 

some properties of this topological index, 

but the main mathematical properties of 

NK index was reported by Klein and 

Rosenfeld [5]. This paper makes a new 

start on research about mathematical 

properties and chemical meaning of NK 

index. We encourage the interested readers 

to consult [6-9] and references therein for 

computational techniques as well as 

mathematical properties of topological 

indices. Consider the graph G with the 

vertex set V (G) = {v1, …, vn}. We define 

the Narumi-Katayama polynomial for this 

graph as follow: 
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1

n

G i

i

NK( G,x ) x d ( v )


   

   Therefore, one can see that NK(G,0) = 

NK(G). Thus, if we obtain a result on 

Narumi-Katayama polynomial, we can 

apply it for Narumi-Katayama index. 

   The discovery of C60 bucky-ball, which 

has a nanometer-scale hollow spherical 

structure in 1985 by Kroto and Smalley 

revealed a new form of existence of carbon 

element other than graphite, diamond and 

amorphous carbon [10]. Fullerenes are 

molecules in the form of cage-like 

polyhedra, consisting solely of carbon 

atoms. A molecular graph is a simple 

graph such that its vertices correspond to 

the atoms and the edges to the bonds. Note 

that hydrogen atoms are often omitted. 

Molecular descriptors play a significant 

role in chemistry, pharmacology, etc. 

Among them, topological indices have a 

prominent place [11]. One of the important 

classes of molecular graphs are nanostar 

dendrimers. Nanostar dendrimers are a 

class of polymeric materials. They are 

highly branched, mono disperse 

macromolecules. The structure of these 

materials has a great impact on their 

physical and chemical properties. As a 

result of their unique behavior, nanostar 

dendrimers are suitable for a wide range of 

biomedical and industrial applications 

[12]. Many papers are constructed to 

investigate the topological indices of 

nanostar dendrimers, for more details we 

refer to [13-15]. In this paper, we 

investigate the properties of Narumi-

Katayama polynomial. To do this, we 

begin with the investigation of coefficients 

of this polynomial. Also we compute the 

Narumi-Katayama polynomial of splice 

and link of two graphs, then we using them 

to compute the Narumi-Katayama 

polynomial of a class of nanostar 

dendrimers and the chain of fullerenes. 

 

2. MAIN RESULTS 

   We start this section by computing 

Narumi-Katayama polynomial of some 

known graphs as it appears in the 

following table. 

 

Table 1. Narumi-Katayama polynomial of 

some known graphs. 

Graph G NK(G,x) 

Kn (x + n - 1)
n
 

Pn (x + 1)
2
(x + 2)

n-2
 

n-cycle (x + 2)
n
 

Kn,m (x + n)
m
(x + m)

n
 

Wn (Wheel 

graph) 
(x + n - 1)(x + 3)

n-1
 

Petersen 

Graph 
(x + 3)

10
 

 

   Let G be a graph with vertex set V(G) = 

{v1, …, vn}. Add new vertices {u1, …, un} 

together with new edges {viui : 1 ≤ i ≤ n} 

to G. Then the resulting graph is called sun 

and we denote it by sun(G). Also, if we 

add to G the new vertices {u1,1, …, u1,r, …, 

un,1, …, un,r} together with new edges {viui,j 

: 1 ≤ i ≤ n, 1 ≤ j ≤ r}, we denote the 

resulting graph by sun(G, r). Thus, it is 

easy to see that sun(G; 1) = sun(G). 

 

Theorem 2.1. If G is a graph such that 

V(G) = {v1, …, vn}, then 

      
1

1
n

nr

G i

i

NK sun G,r ,x x x d ( v ) r .


   

In particular, if G is k-regular, then 

      1
nr n

NK sun G,r ,x x x k r .     

 

Proof. Since the degree of each vertex ui,j 

 V(sun(G,r)), 1 ≤ i ≤ n, 1 ≤ j ≤ r, is equal 

to 1, we have: 

 

     

   

   

1 1

1 1

1

1

1

n r

sun( G ,r ) i sun( G ,r ) i , j

i j

n r

G i

i j

n
nr

G i

i

NK sun( G,r ),x x d ( v ) x d ( u )

x d ( v ) r x

x x d ( v ) r

 

 



  

   

   

 

 



and the proof is completed.                       

 

   A caterpillar tree or caterpillar is a tree 

in which all the vertices are within distance 
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1 of a central path. If each vertex of the 

central path Pn has r pendant edges, we 

denote this caterpillar by cat(r). Therefore, 

it is easy to see that cat(r) = sun(Pn, r). 

Now, by Theorem 2.1, we have the 

following corollary. 

 

Corollary 2.2. For the graph cat(r) we 

have 

        
2 2

1 1 2
nr n

NK cat r ,x x x r x r .


     

 

Proof. Since cat(r) = sun(Pn, r), we can 

write 

 

     

   

     

1

2 2

1

1 1 2

n

n

n
nr

P i

i

nr n

NK cat r ,x NK sun P ,r ,x

x x d ( v ) r

x x r x r .







   

     

  

                                                                   
 

   Now, we investigate the coefficients of x 

in the Narumi-Katayama polynomial of a 

graph G with n vertices. It is obvious that 

the coefficient of x
n
 in NK(G,x) is 1. Let U 

be a subset of V(G). The truncated Narumi-

Katayama index, NK
(U)

, in [15] has been 

defined as 

 ( U )

G

v V ( G ) U

NK ( G ) d ( v )
 

   

   Similarly, we define the truncated 

Narumi-Katayama polynomial of a graph 

G as fallow: 

 ( U )

G

v V ( G ) U

NK ( G,x ) x d ( v )
 

   

 

   The following theorem shows a 

relationship between the coefficients of the 

variable x in Narumi-Katayama 

polynomial and truncated Narumi-

Katayama index. 

 

Theorem 2.3. Let G be a graph and 

NK(G,x) = x
n
 + an-1x

n-1
 + … + a1x + a0. 

Then 

    
 

U

i

U V G
|U| n i

a NK G

 

   

Proof. Let d1, …, dn be the degree 

sequence of the graph G. So 

      1 nNK G,x x d x d    

   In this polynomial, by taking i number of 

x among the prentices, we should choose 

n-i degree of other vertices among the 

other prentices. So, the coefficient of x
i
 is 

the sum of the degrees of n-i vertices of G. 

In each choose of n-i vertices of G, we 

count a NK
(U)

 for an UV(G) such that 

|U|=n-i and so    
 

U

i

U V G
|U| n i

a NK G

 

  .       

   Suppose that G and H are two graphs of 

order n and m, respectively. For given 

vertices vn V (G) and u1 V (H) a splice 

of G and H by vertices vn and u1, (G • 

H)(vn, u1) , is defined by identifying the 

vertices vn and u1 in the union of G and H. 

Similarly, a link of G and H by vertices vn 

and u1 is defined as the graph (G  H)(vn, 

u1) obtained by joining vn and u1 by an 

edge in the union of these graphs [16]. In 

the next theorem, we obtain the Narumi-

Katayama polynomial of these two graph 

operations. 

 

Theorem 2.4. If G and H are two graphs 

with n and m number of vertices, 

respectively, then 

    
 

   

   

1

1

1

G n H

n

G n H

x d ( v ) d ( u )
NK G • H v ,u ,x

x d ( v ) x d ( u )

NK G,x NK H ,x

 


 



and 

    
   

   

   

1

1

1

1 1G n H

n

G n H

x d ( v ) x d ( u )
NK G ~ H v ,u ,x

x d ( v ) x d ( u )

NK G,x NK H ,x

   


 



 

Proof. Let G and H be two graphs such 

that V(G) = {v1, …, vn} and V (H) = {u1, 

…, um}. We have 

       

     

1

1

1

1

1

1

2

n

n

n

n iG•H v ,u
i

m

j G n HG•H v ,u
j

NK G • H v ,u ,x x d ( v )

x d ( u ) x d ( v ) d ( u )







 

    





   

 

1

1 2

1

n m

G i H j

i j

G n H

x d ( v ) x d ( u )

x d ( v ) d ( u )
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1

1

G n H

G n H

x d ( v ) d ( u )

x d ( v ) x d ( u )

NK G,x NK H ,x

 


 



 

 

   Similarly 

       
1

1

1
n

n

n iG~H v ,u
i

NK G ~ H v ,u ,x x d ( v )


 
 

   
1

1
n

m

jG~H v ,u
j

x d ( u )


 
 

   

  

1

1 2

11 1

n m

G i H j

i j

G n H

x d ( v ) x d ( u )

x d ( v ) x d ( u )



 

  

    

 
 

   
   

   

1

1

1 1G n H

G n H

x d ( v ) x d ( u )

x d ( v ) x d ( u )

NK G,x NK H ,x .

   


 



 

                                                                 
 

   The results for splice can be in a 

straightforward way generalized to more 

than two operands (see [14]). If we have 

graphs 1 kG , ,G  and i iv V(G )  for each i 

= 1, …, k, then their splice in vertices vi is 

obtained by identifying all k vertices vi. 

 

Corollary 2.5. Consider the graphs 

1 kG , ,G  and i iv V(G )  for each i = 1, 

…, k, then 

 

1 2

1

1

1

i

i

k

k i

i

k

G i

i

k

G i

i

NK( G • G • • G ) NK( G )

x d ( v )

.

x d (

,

v )

,x x








 
 

 










 

 

   If we have k copies of the same graph G 

and splice them at the same vertex v, we 

obtain 
kG
, the k-th splice-power of G. 

The above result then simplifies to 

 
1

k

k

k

G

k NK( G )
NK( G ) .

d ( v )




  

   The links of more than two graphs is 

known as the chain (or bridge) graphs. Let 

Gi, 1 ≤ i ≤ k, be some graphs and vi  

V(Gi). A chain graph denoted by 

1 1k kG G(G , ,G ,v , ,v )    is obtained 

from the union of the graphs Gi, i = 1, … , 

k, by adding the edges vivi+1, 1 ≤ i ≤ k-1. 

   Then 
1

k

i

i

|V( G )| |V( G )|


  and 

1

1
k

i

i

| E( G )| ( k ) |E( G )|


   . 

Obviously 1 2 1 2G(G ,G ,v ,v )   

1 2 1 2( G ~ G )( v ,v ). 

 

   It is worth noting that the above specified 

class of chain graphs embraces, as special 

cases, all trees (among which are the 

molecular graphs of alkanes) and all 

unicyclic graphs (among which are the 

molecular graphs of monocycloalkanes). 

Also the molecular graphs of many 

polymers and dendrimers are chain graphs. 

   Further, when all Gi are equal to G, the 

chain graph becomes a rooted product of 

the path on k vertices and G, and if, in 

addition, all vi are equal, we have the 

crown of Pk and G. 

   Let 1 1k kG G(G , ,G ,v , ,v )    is a chain 

graph. Then obviously the following holds. 

1 1

2 2 1

i

i

i

G i i

G G i i

G i i

d ( u ) if u V( G ) and u v

d ( u ) d ( v ) if u v , i ,k .

d ( v ) if u v , i k

  


   


    

 

Theorem 2.6. For the chain graph 

1 1k kG G(G , ,G ,v , ,v )   , we have 

 

1

1

1 1 1

1

2

1

1

1 2
k

i i

k k G

k

G k G i

i

n
( V ( G ) v )

i

i

NK( G( G , ,G ,v , ,v ),x ) ( x d ( v ) )

( x d ( v ) ) ( x d ( v ) )

NK ( G ).,x









    

    







Proof. By definition of a chain graph, the 

degree of each vertex v in a chain graph, 

except vi’s, is as the same as in its 

underlying graph. Also, the degrees of v1 

and v2 are added by 1 and the degrees of 

v2, …, vn-1 are added by 2, which these 

yield to the result.                                      
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   Now, we obtain the Narumi-Katayama 

polynomial of some graph operations 

whose Narumi-Katayama index has 

computed in [14]. We, also, generalize 

some of the proof techniques in [14]. The 

join of two graphs G1 and G2 is obtained 

by taking their union and adding all 

possible edges between V(G1) and V(G2). 

We denote it by 1 2G G . When one of the 

graphs is K1, the join of K1 and G is called 

the suspension of G.  

 

Theorem 2.7. Let G be a graph. Then 

 

 1

(U )

U V ( G )

NK( K G,x ) x n NK (G,x ).


   

Proof. The degree of a vertex of G in its 

suspension increases by one, while the 

degree of the vertex of K1 is equal to |V(G)| 

= n. Hence the Narumi-Katayama 

polynomial of 1K G  is given by 

 1

1

1
n

G i

i

NK( K G,x ) x n ( x d ( v ) ).


      

   The product on the right-hand side of the 

above formula can be expressed in terms 

of truncated Narumi-Katayama polynomial 

with respects to all subsets of V(G). The 

result follows by expanding the product 

into a sum of 2
n
 terms and noting that the 

products of the sum of x and degrees of 

each of 2
n
 subsets of V(G) appear exactly 

once in the sum.                                        

 

   The above result can be 

straightforwardly generalized to the case 

when one of the components of a join is 

the set of m isolated vertices, i.e., the 

complement mK  of the complete graph Km. 

 

Theorem 2.8. For a graph G, we have 

 
m

m

(U ) n |U|

U V ( G )

NK( K G,x ) x n

NK ( G,x )m .



  

 
 
 

 
 

 

   A closer look on the above formula 

should reveal that all effects of the 

independence of vertices of mK  are 

concentrated in the n
m
 term. Hence we can 

conclude the following result. 

 

Theorem 2.9. Let G1 and G2 be two graphs 

with n1 and n2 vertices, respectively. Then 

1 1 1

1 1

2 2 2

2 2

1 2 1 2

2 1

( U ) n |U |

U V ( G )

( U ) n |U |

U V ( G )

NK( G G ) NK ( G ),x ,x

,

n

NK ( G )n .x









 
   

 

 
 
 





 

Proof. The contribution of vertices of one 

component in the join of two graphs 

depends only on the number of vertices in 

the other component, and not on its 

internal structure. From this observation 

we can deduce the formula for the general 

case as below: 

1

1

2

2

1 1 1

1 1

2 2 2

2 2

1 2 2

1

1

1

1 2

2 1

n

G i

i

n

G i

i

( U ) n |U |

U V ( G )

( U ) n |U |

U V ( G )

NK( G G

,

,x ) ( x d ( v ) n )

( x d ( v ) n )

NK ( G x

,

)n

NK ( G .x )n













 
    

 

 
   
 

 
 
 

 
 
 









 

                                                                   
 

   The corona of two graphs G and H is the 

graph obtained by taking |V(G)| copies of 

H and connecting each vertex in the i-th 

copy of H to the vertex vi of G. It is usually 

denoted by G H . 

 

Theorem 2.10. Let G and H be two graphs 

with n and m vertices, respectively. Then 

( U ) n |U|

U V ( G )

n

( W )

W V ( H )

NK( G H ,x ) NK ( G,x )m

NK ( H ,x ) .







 
  
 

 
 
 




 

Proof. A corona is a collection of n 

suspensions of H on a scaffold provided by 

G. The degree of each vertex in corona of 

two graphs is 
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1

G

G H

H

d ( v ) m v V( G )
d ( v )

d ( v ) v V( H )

 
 

 
 

So we have 

 

 1

G H

v V ( G H )

G

v V ( G )

u V ( H )

( U ) n |U|

U V ( G )

n

( W )

W V ( H

H

)

NK( G H ,x ) ( x d ( v ))

x d ( v ) m

x d ( u )

NK ( G,x )m

NK ( H ,x ) .













 

 
   
 

 
   
 

 
  
 

 
 
 











 

                                                                   
   The composition of two graphs G and H 

is the graph with vertex set V(G) × V(H), 

and the vertex u = (u1, v1) is adjacent to the 

vertex v = (u2, v2) whenever either u1u2  

E(G) or u1 = u2 and v1v2  E(H). This 

graph operation is denoted by G[H]. The 

composition of two graphs is also known 

as graph substitution, a name that bears 

witness to the fact that G[H] can be 

obtained from G by substituting a copy of 

H, labeled Hw, for every vertex w in V(G) 

and then joining all vertices of Hw with all 

vertices of Hw' if and only if ww'  E(G), 

and there are no edges between vertices in 

Hu and Hu' otherwise. Now by the above 

approach, one can see the Narumi-

Katayama polynomial of the composition 

of two graphs as follow: 
 

Theorem 2.11. Let G and H be two graphs 

with n and m vertices, respectively. Then 

 
m |U|( U )

G

U V ( H )u V ( G )

NK( G[ H ],x ) NK ( H ,x ) nd ( u ) .




 

 

Proof. The degree of the vertex (u,v) in 

G[H] is dG[H](u,v) = dH(v) + ndG(u), where 

n is the number of vertices of G. So we 

have 

   G H

( u ,v ) V ( G H )

NK( G H ,x ) x d u,v


 

 
u V ( G ) v V ( H )

H Gx d ( v ) nd ( u )
 

     

 
m |U|( U )

G

U V ( H )u V ( G )

NK ( H ,x ) nd ( u ) .




   

                                                                   
 

   The Cartesian product G1 × G2 of graphs 

G1 and G2 is a graph such that V(G1 × G2) 

= V(G1) × V(G2), and any two vertices (u1, 

v1) and (u2, v2) are adjacent in G1 × G2 if 

and only if either u1 = u2 and v1 is adjacent 

with v2, or v1 = v2 and u1 is adjacent with 

u2. Now, we complete this section by 

computing the Narumi-Katayama 

polynomial of Cartesian product of two 

graphs. 

 

Theorem 2.12. Let G1 and G2 be two 

graphs with n and m vertices, respectively. 

Then 

 

 

1

21

2

12

1 2 2

1

1

2

m |U|
( U )

G

U V ( G )u V ( G )

n |W|
( W )

G

W V ( G )v V ( G )

NK( G G ) ( NK ( G ) d ( u )

NK ( G ) d (

,

v ) ).

x ,x

,x









 







 

Proof. One can see that the degree of the 

vertex (u,v) in Cartesian product of two 

graphs G1 and G2 is dG1×G2(u,v)= dG1(u)+ 

dG2(v). We can write  

   

 

 

1 2

1 2

2 1

1 2

1

21

1 2

2

G G

( u ,v ) V ( G G )

G G

u V ( G ) v V ( G )

m |U|
( U )

G

U V ( G )u V ( G )

NK( G G ,x ) x d u,v

x d ( v ) d ( u )

NK ( G d ( u ) .,x )



 

 





  

  





 



 

   Similarly, we have 

   

 

 

1 2

1 2

1 2

2 1

2

12

1 2

1

G G

( u ,v ) V ( G G )

G G

v V ( G ) u V ( G )

n |W|
( W )

G

W V ( G )v V ( G )

NK( G G ,x ) x d u,v

x d ( u ) d ( v )

NK ( G ) d (, v )x .



 

 





  

  





 



 

   So to preserve the symmetric of the 

formula for the Narumi-Katayama 

polynomial of Cartesian product of two 

graphs, we have the assertion.                   
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2. NARUMI - KATAYAMA 

POLYNOMIAL OF SOME NANO 

STRUCTURE 

   In this section we use some of our results 

in Section 2 to compute the Narumi-

Katayama polynomial of some 

nanostructures. To do this, we start with a 

class of nanostar dendrimers such that they 

have an inductive structure and are denoted 

by D
’
1[n], (see [13]). In computer science, 

a binary tree is a tree data structure in 

which each node has at most two child 

nodes, usually distinguished as left and 

right. Nodes with children are parent 

nodes, and child nodes may contain 

references to their parents. Outside the 

tree, there is often a reference to the root 

node (the ancestor of all nodes), if it exists. 

Any node in the data structure can be 

reached by starting at root node and 

repeatedly following references to either 

the left or right child. The graph D
’
1[3] is 

shown in Figure 1. 

 

 
Figure 1. The graph D

’
1[3]. 

 

Theorem 3.1. For the graph D
’
1[n] we 

have 

         32 2 4 5 2 2 7

1

1
1 2 3

n n n

NK( D n ,x ) x x x
       

 

Proof. To prove the theorem, we apply 

induction on n. If n = 1, then 

       
3 12 7

1 1 1 2 3NK( D ,x ) x x x      

and the assertion holds. Therefore, let n > 

1. By construction of nanostar dendrimer 

D
’
1[n], one can see that D

’
1[n] is obtained 

from the splice of D
’
1[n] and 2n-1 copies 

of the graph H in Figure 2. 

 

 
Figure 2. The graph H. 

 

   Thus, by Theorem 2.4, we have 

 
 

 

   

1

1 2

1

1 2

5 2 2

1

1

3 2

n

n n

NK( D n ,x )
NK( D n ,x )

x

x x



 












  

 

 

       

 

     

       

1 2 1

1

1 2

3

2 2 41

1

5 2 2 7

2

2 5 2 2

2 2 4 5 2 2 7

1 2 3

1

1 3 2

1 2 3

n n n

n

n n n

n n n

x x x

x

x x x

x x x

  



 







  



  

  




   

  

 

and the proof is completed.                       

 

   Now, we apply our results to compute 

the Narumi-Katayama polynomial of a 

nanostar dendrimer. We consider the first 

kind of nanostar dendrimer which has 

grown n steps denoted D3[n], [13]. The 

nanostar dendrimer D3[n] is depicted in 

Figure 3.  

 
Figure 3. The first kind of nanostar 

dendrimer of generation 1-3 has grown 3 

stages.  

 

   First we construct D3[n] from D
’
1[n]. 

Consider three copies of D
’
1[n] with roots 

O, P and Q. The nanostar dendrimer D3[n] 

is obtained by identifying the vertex O of 

one copy of D
’
1[n] with two vertices P and 



8                                                           Aghamohammadi 

Q of two another copies of D
’
1[n]. We 

have the following theorem: 

 

Theorem 3.2. Consider the graph nanostar 

dendrimer D3[n]. We have 
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Proof. By definition of D3[n], one can see 

that if we consider the splice of two copies 

of D
’
1[n]  by vertices O and P , then the 

splice of the resulting graph with another 

copy of D
’
1[n]  by vertex Q will be the 

graph D3[n]. So, using the Theorem 2.4 

and Theorem 3.1, we have 
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which this complete the proof.                 

 

   Now, we provide another example to 

show the application of our result about the 

link of two graphs. In Figure 4, the link of 

two fullerene graph is showed [17]. 

 

Theorem 3.3. Consider the link of tow 

fullerene graph C20 in Figure 4. We have 

 

     
38 2

20 20 3 4NK C C ,x x x  
 

 

Proof. Since the fullerene graph C20 is a 3-

regular graph with 20 vertices,  

 
Figure 4. Link Graph 20 20C C . 

 

NK(C20,x) = (x+3)
20

. Now, by Theorem 

2.4 we have 
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20 20

2

4
3 3

3

x
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x


  


 

   
38 2

3 4x x   .                                    

 

   Now, we are ready to compute the 

Narumi-Katayama polynomial of the chain 

of fullerene graphs in Figure 5. This graph 

has an inductive structure which we denote 

it by 
20 20

n

C C , where n is the number of 

copies of the fullerene graph C20, see [17]. 

 

Figure 5. The chain of fullerene graphs 

C20. 

 

Theorem 3.4. The Narumi-Katayama 

polynomial of the graph 
20 20

n

C C  is as 

follows 

    
 18 2 2 1

20 20 3 4
n

n n
NK C C ,x x x

  
    

 
 

 

Proof. We prove this theorem by induction 

on n. Using Theorem 3.3, the assertion 

holds for n=2. So, suppose that n > 2. 

Since 
1

20 20 20 20 20

n n

C C C C C


   , by 

Theorem 2.4 we have 
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and the proof is completed.                       

 

3. CONCLUSION  

   Until now, for more investigation of 

topological indices, many polynomials are 

associated to different topological indices, 

as instance we refer the readers to [6, 13, 

16]. In this paper, we continue this process 

and we introduce the concept of Narumi-

Katayama polynomial of a graph. This is 

for the first time which a polynomial is 

associated to a multiplicative topological 

index. Then, some graph theoretical 

properties of this polynomial is computed. 

For example, we compute this polynomial 

for the sun graph which its Nk index was 

computed in [18]. Also, we obtain a 

relationship between the coefficient of the 

variable x in this polynomial and the 

truncated Narumi-Katayama index. Next, 

the Narumi-Katayama polynomial of some 

graph operations such as splice and link of 

two graphs are computed. Also, we have 

investigated the behavior of the Narumi-

Katayama polynomial under several binary 

operations resulting in composite graphs. 

In most cases we obtained formulas 

containing sums of truncated Narumi-

Katayama polynomial with respect to all 

subsets of the vertex sets of considered 

graphs. Furthermore, there are some 

interesting operations we have not 

considered here. Finally, our results on 

these graph operations are applied to 

compute the Narumi-Katayama 

polynomial of a class of nanostar 

dendrimers and the link of fullerene graphs 

C20. By this methods and techniques, 

Narumi-Katayama polynomial of many 

families of nanostar dendrimers and the 

link of other fullerene graphs which are not 

mentioned in here, can be computed. 

Notice that, since the Narumi-Katayama 

index of a graph can be obtained by 

Narumi-Katayama polynomial of that 

graph, so our results are applicable for 

Narumi-Katayama index of graphs. 
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