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Abstract: 
   Nowadays, due to bacterial antibiotic resistance, the design of new high-performance antibiotics to 

maintain human health has been a significant challenge. Accordingly, photothermal antibiotics have been 

developed based on semiconductor materials such as graphene. Herein, copper sulfide (CuS) nanoplates 

and graphitic carbon nitride (g-C3N4)/CuS were synthesized as salient antibacterial agents and their 

antibacterial features were assessed using polymethyl methacrylate (PMMA) as a practical matrix. The 

morphology and structure of nanostructures were characterized by X-ray diffraction (XRD), ultraviolet 

(UV)-visible (Vis) diffuse reflectance spectroscopy (DRS), and field emission scanning electron microscopy 

(FESEM). Based on the results obtained by the UV-Vis light absorption, the g-C3N4, CuS, and g-C3N4/CuS 

nanostructures illustrated strong absorptions in the visible light region while demonstrated 2.92, 1.20, and 

0.27 eV band gaps, respectively. Eventually, the study of the antibacterial properties of the nanostructures 

exhibited that the zone of inhibition is augmented by anchoring the CuS nanoplates onto the g-C3N4 

surface. Interestingly, g-C3N4/CuS nanocomposite brought 12 and 17 mm zone of inhibitions for 

Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. More significantly, the 

results attested that inserting the g-C3N4 nanostructures promote the antibacterial features of CuS 

nanoplates, originated from its nucleation effect boosting surface area to volume ratio of the sulfides, 

amplifying interfacial interaction, and elevating established reactive oxidative species (ROS) killing the 

bacteria. The presented research opens new windows toward augmenting the antibacterial features of 

biomedical polymers. 
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1. INTRODUCTION 

   The bacterial infection is threatening the 

health of humans and any living species, on 

the other hand, the infecting bacteria pollute 

the water, soil, and the environment, 

eventually leading to the death of animals 

and plants. Therefore, till now, antibacterial 

agents have attracted a great deal of 

attentions and many of them have been 

developed [1]. The excessive use of 

antibiotics has resisted the bacteria against 

their drugs, causing a serious public health 

problem[2]. Among them, metal-based 

composites and semiconductor materials 

have recently obtained more attention [3-6]. 

Till date, the antibacterial properties of 

various metals, metal oxides, and metal 

sulphides consisting silver [7, 8], gold [9, 

10], copper [11, 12], carrollite [13], 

cadmium oxide[14], cadmium hydroxide 
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[14], and  zinc oxide [15, 16] have been 

evaluated. All in all, the metallic structures 

have exposed a significant antimicrobial 

activity [17-20] tuned by the shape [21], 

morphology [22, 23], zeta potential [24, 25], 

dispersion, size, and surface area to volume 

ratio [26, 27], etc. The antibacterial property 

of nanoparticles is improved by increasing 

the specific surface area to volume ratio 

[28]. Previous studies have reported that as 

the agglomeration of metal nanoparticles 

decreases, the antibacterial property is 

improved, even at low concentrations [29].  

It should be noted that the microorganisms 

do not have any resistance against the 

metallic particles which this issue testifies to 

the importance of the metallic antibacterial 

agents. CuS is a p-type semiconductor 

which has recently received huge attentions 

due to its diverse applications in solar 

cells[30], photocatalysis [31], sensors [32],  

optical applications [33],  antibacterial 

structures [34], and so on. Moreover, 

widespread morphologies of CuS 

nanoparticles such as nanotube [35], 

nanorod [36-38], nanoribbon [39]  have 

been reported, architected using the 

hydrothermal and sonochemistry methods 

[29, 40-42]. The considerable antibacterial 

activity of CuS nanoparticle is mainly 

generated through the production of ROS 

[43-45]. Also, the combination of polymer 

and inorganic nanoparticles is attractive 

because g-C3N4 acts as a nucleation center 

enhancing the heterogeneous interfaces of 

CuS nanoparticles, desirable for 

antibacterial features. Interestingly, loading 

the nanoparticles in the polymer matrix 

modifies the surface of nanoparticles [46]. 

In this study, PMMA has been chosen as a 

polymeric medium due to its usability in 

different fields such as biomedical, energy, 

electronic, and optical [47]. It is well known 

that PMMA is one of the best choices in 

medical applications including contact 

lenses, intraocular lenses, bones, artificial 

corneas, artificial organs, dialysis 

membranes, dental materials, and so on [48, 

49]. More importantly, accompanying the 

antibacterial characteristics develop 

biomedical applications of PMMA. 

Chitosan-g-poly(acrylamide)/CuS nano-

composite has been successfully prepared 

for antibacterial activity against E. coli using 

microwave irradiation [50]. Also, 

antibacterial properties of CuS/alginate 

composite showed evident antibacterial 

activity against the E. coli and L. 

monocytogenes bacteria [51]. Furthermore, 

g-C3N4 with a bandgap value of 2.7 eV has 

become one of the extremely exciting 

materials due to its photocatalytic properties 

and antibacterial activities [52-54].  

   Current researches have shown that g-

C3N4-based materials have proper 

antibacterial activity associated with the 

production of a wide variety of ROS and 

facile displacement of electrons in their 

conduction band [54-56]. Ding et al. have 

reported the preparation of CuS/protonated 

g-C3N4 composite by electrostatic bonding 

between protonated g-C3N4 and CuS [57]. 

The achieved results manifest in which the 

CuS content is 20%, the composite has 

synergistic effects of both photothermal and 

photocatalytic action under light irradiation, 

so antibacterial activity against S. aureus 

and E. coli was enhanced, attributed to the 

established ROS [57].  

   The microwave absorbing character-

istics of g-C3N4/CuS/PMMA were reported 

by our researching group [58]. In this study, 

the antibacterial properties of g-C3N4, CuS, 

and g-C3N4/CuS dispersed in PMMA as a 

practical matrix were investigated. Herein, 

for the first time, the antibacterial 

properties of the CuS nanoplates anchored 

onto g-C3N4 nanosheets were scrupulously 

evaluated; giving an incomparable 

prospect toward augmenting the 

antibacterial features in the medical 

polymers. The result revealed the 
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significant antibacterial activity of 

CuS/PMMA and g-C3N4/CuS/PMMA 

nanocomposites against E. coli and S. 

aureus derived from the produced ROS. 

 

2. EXPERIMEBTAL STEPS  

2. 1. Material 

   All chemicals used in this study were 

analytical grade and were used without 

further treatment. Sodium sulfide hydrate 

(60.0-62.0%) was obtained from Samchun 

Chemicals (South Korea) while copper (II) 

acetate (OAc) monohydrate, urea, and 

dichloromethane (DCM) were purchased 

from Merck (Germany). PMMA as a 

polymeric medium was obtained from 

Sigma-Aldrich (United States America). 

Bacteria including E. coli PTCC 1330 and S. 

aureus 25935 were purchased from Persian 

type culture collection, an Iranian research 

organization for science and technology 

(IROST). 

 

2. 2. Synthesis of g-C3N4 

   The g-C3N4 structure was fabricated by 

the methods reported in previous researches 

[59, 60]. For the synthesis of g-C3N4, urea 

(15 g) was dissolved in 20 mL water and 

then dried at 50˚C for 24 h. In the next step, 

the dried urea was heated in a furnace for 5 

h at 520 °C. 

 

2. 3. Preparation of CuS Nanoplates 

   CuS nanoplates were prepared using a 

hydrothermal method [61]. In a typical 

synthesis, Cu (OAc)2. H2O (1.8 g) was 

dissolved in deionized water (30 mL) and 

added to an aqueous solution of sodium 

sulfide hydrate (1.76 g). The solution was 

transferred into a 100 mL Teflon-lined 

stainless steel autoclave and heated at 180 

◦C for 18 h. After being cooled to room 

temperature, the resulting solid was 

centrifuged, washed with deionized water 

and anhydrous ethanol, and dried at 50 ◦C 

for 6 h. 

 

2. 4. Preparation of g-C3N4/CuS Nano-

composite  

   The g-C3N4/CuS nanocomposite was 

obtained by a complementary sono-

chemical and hydrothermal method [59]. 

The g-C3N4 (20 wt. % of CuS nanoplate) 

was added to a water/ethanol (65 wt. %) 

solution. Afterward, Cu (OAc)2. H2O (0.7 

g) was added and the suspension was 

treated by ultrasound waves for 30 min. 

Then, a solution of sodium sulfide (1.8 g 

in 30 mL water) was slowly added to the 

aforementioned suspension under 

ultrasound waves. Finally, the suspension 

was sonicated for 30 min and annealed at 

180 °C for 18 h. The tailored precipitate was 

rinsed and dried at 50 °C. 

 

2. 5. Molding the Samples Using PMMA 

Matrix 

   Each sample (50 wt. %) was dispersed in 

PMMA solution (40 wt. % in DCM) by 

ultrasound waves for 20 min. Eventually, the 

nanocomposites were obtained by drying the 

suspensions at 60 °C. Fig.1 illustrates a 

schematic representation of the experimental 

scenarios applied to prepare the 

nanostructures [58]. 

 

2. 6. Antibacterial Activity  
   Antibacterial activity of g-C3N4, CuS 

nanoplate, and g-C3N4/CuS nanocomposite 

was performed using the diffusion method in 

Mueller-Hinton agar. Briefly, a suspension 

(0.5 × 108 CFU/mL) of E. coli and S. aureus 

bacteria was spread on an agar culture 

medium.  
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Figure1. Schematic representation of the experimental scenarios. 

 

   Then, g-C3N4/PMMA, CuS nanoplate/ 

PMMA, and g-C3N4/CuS/PMMA (13 mg) 

were placed in the culture media and 

incubated at 37 ° C for 24 h [62, 63]. 

Vancomycin and streptomycin as positive 

and negative control were applied, 

respectively. 

 

3. RESULTS AND DISCUSSION 

3. 1. Field Emission Scanning Electron 

Microscopy (FESEM) Micrographs 

   The morphology of g-C3N4, CuS 

nanoplate, and g-C3N4/CuS nanocomposite 

was investigated by FESEM micrographs 

(Fig. 2a-d). As can be seen, the shapeless g-

C3N4 (Fig. 2a) was obtained using urea as a 

precursor. The results show that the 

preparation of CuS by hydrothermal method 

leads to the hexagonal morphology of CuS 

(Fig. 2b, c). FESEM images of g-C3N4/CuS 

(Fig. 2d, e) indicated a uniform distribution 

of hexagonal CuS nanostructures onto the 

shapeless g-C3N4 structures, prepared in 

water/ethanol solvent by a sonochemical and 

solvothermal complementary method. 

 

3. 2. XRD Patterns 

   Fig. 3 shows the XRD patterns of g-C3N4, 

CuS, and g-C3N4/CuS nanocomposite. As 

displayed in the patterns, the peaks existing 

at 2θ= 26.79◦, 27.32◦, 28.87◦, 31.39◦, 

32.42◦, 47.21◦, 47.41◦, 52.20◦, 59.01◦ 

correspond respectively to (100), (101), 

(102), (103), (006), (107), (110), (108), 

(116) crystal planes confirming that the 

crystalline phase of hexagonal CuS was 

formed, based on JCPDS card number: [01-

078-0876].  According to the Sherrer 

equation, the particle size of CuS nanoplates 

is 10.3 nm [58, 64].  

   XRD pattern of g-C3N4/CuS also confirms 

that the crystalline structure of CuS 

nanoplates has been maintained after the 

applied experimental scenario. The g-C3N4 

is synthesized by conjugated tri-s-triazine 

unit and the peaks at 2θ= 13.12◦ and 27.50◦ 

related to (100) and (200) crystal planes 

confirm its formation, given by JCPDS 

number of [01–087-1526] [58, 65-67]. It 

should be noted that the intensity of g-C3N4 

peaks in g-C3N4/CuS is negligible due to the 

more mass fraction and intense crystalline 

structure of CuS.  On the other hand, the 

used high-power ultrasound waves expand 

the stacked g-C3N4 leading to the exfoliation 

of polymeric layers and elevating its 

amorphous structure [58, 68-70].  
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Figure 2. FESEM micrographs of g-C3N4 (a), CuS nanoplates (b, c), and g-C3N4/CuS 

nanocomposite (d, e). 

 

 
Figure 3. XRD patterns of g-C3N4, CuS, and 

g-C3N4/CuS nanostructures. 

 
3. 3.  FTIR of the Samples 

   The chemical functional groups of g-C3N4, 

CuS, and CuS/g-C3N4 nanostructures were 

investigated by FTIR spectroscopy (Fig. 4). 

The broadband peak observed at 1250-1600 

cm
−1 is related to the C-N and C=N 

stretching vibrations of the tri-s-triazine 

rings. Furthermore, the presence of triazine 

units is approved by the sharp absorption 

band at 860 cm
−1 [67, 70]. Besides, the 

peaks ascribed to the amino groups of g-

C3N4 were obtained at 3175 cm
−1

. 

Noticeably, the diminution of g-C3N4 peaks 

in the synthesized CuS/g-C3N4 composite is 

due to the high content of CuS [58].  

   The stretching vibration band of Cu-S and 

Cu=S were observed at 421 and 611 cm
−1

, 

respectively. The peak at 1097 cm
−1 was 

attributed to S-Cu-S [27, 29]. The assigned 

broadband peak around 3450 cm
−1

 

corresponds to the stretching mode of the 

hydroxyl groups and the notch at 1630 cm
−1 

is associated with the bending mode of H–

O–H of the adsorbed water [71]. The peak at 

2356 cm
−1 arises from the adsorbed CO2 

[70]. 

 

3. 4. UV-Vis Spectra 

   According to the UV-Vis spectra, g-C3N4, 

CuS, and g-C3N4/CuS showed strong 

absorption in the visible light region (Fig. 

5a, b).  
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Figure 4. FT-IR spectra of g-C3N4, CuS, 

and g-C3N4/CuS nanostructures. 

 

   Obviously, ornamenting the g-C3N4 by 

CuS nanostructures increased the absorption 

intensity. Recently, similar results have been 

reported for the UV-Vis absorption of g-

C3N4/CuS composites (Fig. 5a)[72, 73]. The 

bandgap energy (BGE) and UV–Vis 

absorption properties of g-C3N4, CuS, and 

g-C3N4/CuS nanostructures were 

characterized as shown in Fig. 5a, b. UV–

Vis absorption occurs by charge transfer 

from the valance band to the conduction 

band. The BGE for g-C3N4, CuS, and g-

C3N4/CuS was calculated using Kubelka- 

Munk theory [74]. Results have shown that 

BGE of g-C3N4, CuS, and g-C3N4/CuS were 

2.92, 1.20, and 0.27 eV, respectively (Fig. 

5b). Based on the BGE results, g-C3N4 

exhibited a semiconductor feature which is 

due to the intra and intermolecular electronic 

transitions from n and π→π* in the 

conjugated structures[75]. Also, d→d 

transmissions of CuS nanoplates promote 

the light adsorption in the g-C3N4/CuS 

nanocomposite [58]. Considering the 

morphological effect on the BGE, CuS has 

shown a narrower BGE than previous 

research (1.70–1.96 eV) [76].  

 

3. 5. Antibacterial Activity  
   Previous researches have shown that g-

C3N4 and CuS, under visible light radiation, 

form ROS by transferring electrons from the 

valance band to the conduction band [54-

56]. 

 

 
Figure 5. UV−Vis DRS (a) and (αhν)1/2 vs. 

hν plots (b) of g-C3N4, CuS, and g-C3N4/CuS 

nanostructures. 

 

   Herein, the antibacterial properties of g-

C3N4, CuS, and g-C3N4/CuS nanostructures 

were studied without visible light radiation. 

The antibacterial test did not show any 

antibacterial activity for g-C3N4 but CuS and 

g-C3N4/CuS demonstrated significant 

antibacterial features (Table.1). Fig. 6a, b 

show the antibacterial assays of g-C3N4, 

CuS, and g-C3N4/CuS nanostructures against 

E. coli and S. aureus. The recent reports 

have indicated that the antibacterial activity 

of CuS nanoparticles depends on the type of 

bacteria due to their different cell wall 

structures [51, 77]. 

   Generally, diverse mechanisms have been 

proposed to antibacterial properties of CuS 
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nanoparticles. It is believed that free Cu2+ 

produced by CuS destroys the cell wall 

through interaction with the negatively 

charged membrane protein. It has also been 

reported that the proximity of CuS 

nanoparticles with bacterial cells can cause 

wrinkles and damage to the bacterial wall 

[43]. Another plausible interpretation is 

ROS produced by CuS nanoparticles. 
Oxidative stress by ROS is one of the most 

striking antibacterial mechanisms of 

nanoparticles [78-80]. Particularly, the 

aerobic respiration of bacteria reduces 

molecular oxygen and produce O2
− and 

H2O2 [81]. Not only CuS have substantial 

photocatalytic activity but also has a Fenton-

like catalyst activity. Noticeably, Cus 

degrades a wide range of microorganisms 

without light radiation. Fenton reaction leads 

to the production of ROS, following that the 

established ROS including free radical 

species-mediated (OH· and O2·
-) leads to cell 

death through damaging the cell membranes 

[43, 51, 82-85]. As indicated, g-C3N4/CuS 

has a more inhibitory effect on all bacteria 

than CuS. Based on Ayodhya et al. research, 

increasing the surface area of CuS enhances 

the antibacterial activity [86]. The dispersion 

of nanoparticles is highly affected by the 

inorganic nanoparticle-polymer interaction 

and compatibility. For incompatible 

systems, the separation of nanoparticle 

occurs through a dominant erosion process 

while for compatible systems, the size of the 

nanoparticles is decreased by rapid and 

efficient disruption. It has been shown that 

the dispersion of CuS nanoparticles onto the 

g-C3N4 structures as well as the distribution 

of the filler in a system containing PMMA 

matrix can be increased [46, 87]. The 

electrostatic interactions play a vital role in 

paving the way for the proper dispersion of 

the nanostructures, enhancing antibacterial 

characteristics. More significantly, the 

FESEM micrographs testify that CuS 

nanoplates are dispersed on the g-C3N4 

interfaces. As a result, the heterogeneous 

interfaces of g-C3N4 act as nucleation 

centers enhancing the surface area to volume 

ratio of the nanoparticles by enhancing their 

dispersion and diminishing their average 

size. It should be noted that the ultrasound 

waves reinforce the dispersion of the 

nanoparticles, tune their size, and expand the 

stacked polymers [88, 89]. It can be seen 

that the antibacterial activity is related to the 

surface area and dispersion of nanoparticles. 

Thus, increasing the distribution of CuS 

nanoplates onto the g-C3N4 surface 

amplifies the antibacterial activity of g-

C3N4/CuS nanocomposite (Fig. 6a, b). 

Interestingly, PMMA composites demon-

strated proper antibacterial characteristics 

desirable for practical applications in the 

biomedical fields. Fig. 6c, d illustrates a 

negative and positive control using 
streptomycin and vancomycin to more 

correlate the achieved results. 

 

Table1. Comparing the bacterial zone of 

growth inhibition. 

 

4. CONCLUSION  

   In summary, g-C3N4, CuS, and g-

C3N4/CuS nanostructures were fabricated 

using simple scenarios by annealing, 

hydrothermal, and sonochemical method. 

The architected structures were blended by 

PMMA as a practical medium. The UV-Vis 

spectra demonstrated that the g-C3N4/CuS 

nanocomposite could absorb both UV and 

visible light.  

Sample Zone of inhibition (mm) 

E. coli S. aureus 

g-C3N4/PMMA - - 

CuS/PMMA 10 10 

g-C3N4/CuS/PMMA 12 17 

control 23 20 
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Figure 6. Antibacterial activity of g-

C3N4/PMMA, CuS/PMMA, and g-

C3N4/CuS/PMMA against E. coli (a), S. 

aureus (b), negative control (c), and positive 

control (d). 

 

   Nevertheless, the antibacterial properties 

investigated against gram-positive and 

negative bacteria (S. aureus and E. coli) 

were performed without light radiation. The 

FESEM images indicated that CuS 

nanoplates are well dispersed onto the g-

C3N4 interfaces.The achieved results 

declared that g-C3N4/CuS nanocomposite 

has significant antibacterial activity due 

to the modified structure of CuS 

anchored onto the g-C3N4. The diameters 

of inhibition zones against E. coli and S. 

aureus were 12 and 17 mm for g-

C3N4/CuS/PMMA, respectively. Therefore, 

CuS and g-C3N4/CuS nanostructures can be 

applied as practical antibacterial filler to 

establish antibacterial feature in PMMA. 

The presented research suggests an 

incomparable prospect to augment the 

antibacterial characteristics in the 

biomedical polymers. 
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