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Abstract:

It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in
a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation
defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions
framework their system). Due to the optimization, one can also obtain increasing of homogeneity of dopant
in doped area. In this paper, we consider manufacturing of a field-effect heterotransistor without p-n-
junction. Framework the approach of manufacturing, we consider a heterostructure with specific
configuration, doping required parts of the heterostructure by dopant diffusion or by ion implantation and
optimization of annealing of dopant and/or radiation defects. The optimization gives us possibility to
decrease dimensions of field-effect transistors. We introduce an analytical approach to model technological
processes without crosslinking concentrations of dopant and radiation defects on interfaces between layers
of heterostructure.

Keyword: Field-effect transistors, Decreasing of dimensions of transistors, Analytical approach to model
transistors, Optimization of technological process.

temperature is created. This gives us the possibility
1. INTRODUCTION to increase sharpness of p-n-junctions with
simultaneous increasing of homogeneity of
distribution of dopant concentration in doped area
[8-14]. In this situation, one can obtain more
shallow p-n-junctions and at the same time
decrease dimensions of transistors which include

The development of manufacturing of electronic
devices causes necessary need to reduce the size of
integrated circuit elements and their discrete
analogs [1-7]. To reduce the required sizes of p-n-

junctions and their systems (such transistors and
thyristors) formed by diffusion and implantation,
several approaches could be used. First of all, laser
and microwave types of annealing should be
considered [8-14]. By using these types of
annealing,  inhomogeneous  distribution  of

into itself the p-n-junctions. The second way to
decrease dimensions of elements of integrated
circuits is using of native inhomogeneity of
heterostructure and optimizing the annealing of
dopant and/or radiation defects [12-18]. In this
case, one can obtain increasing of sharpness of p-
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n-junctions and at the same time increasing of
homogeneity ~ of  distribution  of  dopant
concentration in doped area [12-18]. Distribution
of concentration of dopant could also change under
the influence of radiation processing [19]. In this
situation, radiation processing could also be used
to increase the sharpness of single p-n-junction and
p-n-junctions, which include into their system
[20,21].

In this paper, we consider a heterostructure,
which consists of a substrate and a multi-section
epitaxial layer (Figures 1 and 2). Further, we
consider manufacturing a field-effect transistor
without p-n-junction in this heterostructure.
Appropriate contacts are presented in the Figurs 1
and 2. A dopant has been infused or implanted in
areas of source and drain before manufacturing the
contacts to produce required types of conductivity.
Also, we consider annealing of dopant and/or
radiation defects to infuse the dopant on required
depth (in the first case) or to decrease quantity of
radiation defects (in the second case). Annealing of
radiation defects gives us possibility to obtain

spreading of distribution of concentration of
dopant. To restrict the dopant diffusion into
substrate and to manufacture more thin structure, it
is practicable to choose properties of
heterostructure so that dopant diffusion coefficient
in the substrate should be smaller than dopant
diffusion coefficient in epitaxial layer as much as
possible [12-18]. In this case, it is practicable to
optimize annealing time [12-18]. If dopant does
not achieve interface between layers of
heterostructure during annealing of radiation
defects, it is practicable to choose additional
annealing of dopant. The main aims of the present
paper are (i) modeling of redistribution of dopant
and radiation defects and (ii) optimization of
annealing time. Then, manufacturing thinner field-
effect transistor based on using inhomogeneity of
heterostructure is possible. It should be noted that
the considered in our paper technological approach
has not been recently described in literature (see,
for example, [22-24] and similar works). In this
situation, the described approach could be
considered as a new approach.
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Figure 1. Heterostructure with a substrate and multi-section epitaxial layer. View from top
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Figure 2. Heterostructure with a substrate and multi-section epitaxial layer. View from one side
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2. METHOD OF SOLUTION

To reach the goals of this study, we determine
spatio-temporal distribution of concentration of
dopant. We determine the distribution by solving
the second Fick’s law: [1-4]

oC(xy.zt)_ 25 dCxt)
ot ox| ¢ Ox
With boundary and initial conditions

aC(xt) oCxt)  _4, Cx0-fC (x).

=L

0X oX

1)

=0

x=0 X

)

Here C(x,t) is the spatio-temporal distribution
of concentration of dopant; T is the temperature of
annealing; D¢ is the dopant diffusion coefficient.
The value of dopant diffusion coefficient depends
on properties of materials of heterostructure, speed
of heating, and cooling of heterostructure (with
account Arrhenius law). Dependences of dopant
diffusion on parameters could be approximated by
the following function [25-28]

5I(x,t):£{Dl (X’T)ﬁl(x,t)}

ot OX OX
ﬁV(x,t)zi{Dv (X,T)é’v(x,t)

ot OX OX

with initial condition:

p (x,0)=f, (x) (5a)

And boundary conditions:

o1(x,t) o o1(x,t) _o.

6 X x=0 8 X x=L

Here p=LV; | (x,t) is the spatio-temporal
distribution of concentration of interstitials;
D,(x,T) is the diffusion coefficient of point
radiation defects (vacancies and interstitials); terms
VA(x,t) and 1%(x,t) corresponds to the generation of
divacancies and diinterstitials; k;v(x,T), ki ,(x,T) and
kvv(x,T) are parameters of recombination of point
radiation defects and generation their simplest
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where D (x,T) is the approximation of dopant
diffusion coefficient of coordinate (due to native in
homogeneity of heterostructure) and temperature
(due to Arrhenius law); P(x, T) is the limit of
solubility of dopant; parameter y depends on the
properties of materials and could be an integer in
the following interval y<[1,3] [28]; V(x.t) is the
spatio-temporal distribution of concentration of
radiation vacancies; V' is the equilibrium
distribution  of  vacancies.  Concentrational
dependence of dopant diffusion coefficient has
been described in details by Yu Gotra in [28]. It
should be noted that using doping of materials by
diffusion leads to the absence of radiation damage
1= &= 0. Spatio-temporal distributions  of
concentrations of radiation defects are determined
by solving the following system of equations
[26,27].

D, = DL(X,T){1+§ ;V((X,t)

x,T)

—K,, (T OV (x, 1) =K, , (%, T)1%(x,t)

}—kl,v(x,T)I(x,t)V(x,t)—kV,V(x,T)VZ(x,t)
(4)
oV (xt) . aV(xt) 0
ox | ox |,
1(x,0)=f,(x), V(x,0)=fy(X).
(5b)
complexes (divacancies and diinterstitials).
Here, spatio-temporal distributions of
concentrations of divacancies @, (x,t) and

diinterstitials @ (x,t) are determined by solving the
following system of equations [26,27].
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D, (x,T)“)'—(X’t)} (T E)—k (6T)1 (x,1)

ot OX OX ©)
o, (xt)_ 2 20, (x1) 2(y 1)
80 20, ()PP i (T T (0
with boundary and initial conditions
o1(x,t) i o1(x,t) oV (x,t) 0 oV (x,t) 0
ox |,  ox | oox |, oox |,
1(x,0)=F,(x), V(x,0)=fy(X). (7

Here Dg(x,T) and Dg/(x,T) are diffusion
coefficients of divacancies and diinterstitials;
ki(x,T) and ky (x,T) are parameters of decay of
complexes of radiation defects.

To determine spatio-temporal distributions of
concentrations of point radiation defects, we used
recently introduced approach [16,18]. To
framework the approach, we transformed
approximations of diffusion coefficients of point
radiation defects to the following form:
D,(x,T)=Do,[1+&,9,(X,T)], where Dy, is the average
value of the diffusion coefficients, 0<g< 1,
l9,(x,T)I<1, p=I,V. We also transformed parameters
of recombination of point defects and generation of

T)=kav[1+avaiv(x, )], ki T)=kori[1+&,911(X,T)]
and kvv(x,T) = kovy [1+&vOvu(X, T)], where Ko 2
is the appropriate average values of the above
parameters, 0<g.<1, 0<g,; <1, 0<g,v< 1, |giv
NI, 190(x,TILL, |gvv(x, T)I<1. We introduced

the following dimensionless variables:
T(xt)=1(xt)/1", V(x,t)=V (x,t)V", z=x/Ly 1
= y/l_y’ ¢ = Z/LZ, Szx/mt/Lz ,

2
@=Lk, //Dy Dy, and
0, =1%,,,/,[D,D,, - The dimensionalization in

Egs.(4) and conditions (5) results in the following
form:

their complexes in the same form: Kkjv(X,
01 (z,9) D, ot (1.9
(g;; ): D D P {[1""9 g, (Zv )]a(—i)}_g' [:I-"i'gl,lgu(JK’T)]><
o1 “ov
< 1%(7,9) [1+8.V9.v 2N (2. 9V (2.9) o
oV (y, 9 oV (y,9
a(g ) \/ﬁa {1+5vgv X )] a(f( )}_QV [1+gv,vgv,v(Z’T)]x
o1 “ov
<V2(1,9)-0lt+ e, 9., (7T (7.9V (7.9)
oply, 3 0 9 - f (r,9
plx ) 0 p(z R A C L) o
0x x=0 771 P
We determine solutions of Egs.(8) and - © L@ @ -
conditions (9) framework recently introduce P (Z 'g)zggp%wjg)gﬁpijk (Z "9) (10)

[16,18]. To framework the approach, we determine
the solutions as the following power series
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Substitution of the series Eqg. (10) into
Egs.(8) and conditions (9) gives us the possibility
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to obtain equations for the zero-order conditions for all functions are T (y,9) and

approximations of concentrations of point defects
T,(r,9) and V. _(y,9), corrections are

I (z.9) and V (y,9) (=1, j=1, k>1) and

V,(7,9) (20, j=0, k>0).
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69 D, o1
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09 D, 0z
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ov X Do 0% ox

~ ~ - , 121,
V2, 9) _ Doy 0Viw ()(7'9)_'_ Dy 0 ( T)avi—loo()("g)
0 Do, oy’ Dy 0% o ox
OToo(2,9) 0" Towo(2,9)
010 — ol 010 _ l ’T IOOO Lg VOOO ,Lg
o \ o e 0 ()] o (2. 9WVou(2. 9)
aVOlO(I’Ig) 62V010(z 19) [1+ 8| \% gl v (Z’T )] 000 (Z 19) OOO(Z’IQ)
09 \ %

arozo(li'g) _ Dy, azrozo(lﬂg)_
094 Doy 0 x°

—[1+ EvOiy (Z,T )] [rom (7(1 l9!)\7000 (7, ‘9)"‘ rooo (%, l9)\7010 (7(’ ‘9)];

6\7020(;(,19): Dy, 62\7020(951‘9)_
09 Dy oy’

_[1"' Eviy (Z’T )] [rom (Z’ ‘9)\7;)00 (Z’ 19)"' igooo (Z’ ‘9)\7;)10 (Z’ ‘9)]

é IOOl(l’IE) I:OI ézlom(l’é) c
1 ! I000 !
619 '\ aZZ [ I|g|| Z ] Z )
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001 — OV 001 1 ’ o0 ,19
8]9 '\ N 6Z [ +g||g||(z )]V (Z )
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~0 aﬁijk(lﬂg)
oy ’

=0, (i>0, j>0, k>0):
x=0 aZ

x=1

P 20)=£,(2)/p", P, (20)=0 (i1, j>1, k>1).

We obtained solutions of the obtained solutions considering appropriate boundary and
equations by the Fourier approach [29,30]. The initial conditions could be written as
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1 22
ﬁooo(}("g) E+an_1F C( ) ('9)’

exp (- z*n*9./D,, /D, ), €, (9)=exp(- zn*9./D,, /Dy, ), cnlz) =cos (=

where e, ()=
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1
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u)[1+g|,vg|,v (U’T)]rooo(u’r)\Zoo(ulf)d udz

u ﬁ1+gl 19, |(U’T)]rooo(ulr)rom(uir)"'
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Further, we determined spatio-temporal
distribution of concentration of complexes of point
radiation defects. To calculate the distribution, we
transformed the approximation of diffusion
coefficient to the following form:

oD, (Xt

Ol)(t ) DO(Dl {[1-'_ gq)l g(Dl
o0, _py 2y,

é)t - oV Of,x oV g(DV

Let us determine solutions of the above
equations as the following power series

®,(x.t)=Tep, @, (x,t).

Substitution of the series Eq. (11) into Eq.(6)
and considering their conditions gives us the

(11)
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Do, (X, T)=Doa[1+£0,95,(X,T)], Where Dy, are the
average values of diffusion coefficient. After this
transformation, Eq.(6) transforms to the following
form:

(x T)]M}+ L (T) (0 )—k (0 T)1 (1)

OX

(x,T)]M}+ 6y (T (0 )k (6 TV (x1)

OX

possibility to obtain equations for initial-order
approximations of concentrations of complexes,
their corrections and conditions for all equations in
the following form:
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O®,(xt)_  I°P(xt)

ot 0t ox?
ODyo(xt) _ o 2Dye(xt)

ot 0V ox?
20,()_ S o

R 7 Ax
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O ®@,,(x.t) o'D,,(x.t) o
B TR R

X OX

oD, (x,t) o oD, (x,t)

ox |, ' oX -

Solutions of the above equations have been
obtained by using the Fourier approach [29,30] and

1 2=
q)pO(X’t):E+Er]z_an®pC(X) encbp (t)+

0

+ E >.nc, (X)ecppn (t)} ed)pn (_

n=1

where €, ('[) =exp (_ N2 pr'[/l_2 )’ Fncop

o (xt)=-Z3 t

n= 0 0

where Sp(L) = sin (m n x/L).

Spatio-temporal distribution of concentration
of dopant was determined by using the recently
introduced approach. To framework the approach,
it is necessary to transform approximation of
dopant diffusion coefficient to the following form:
DL(X,T)= Do|_[1+8|_g|_(X,T)], where D0|_ is the
average value of dopant diffusion coefficient,
0<g< 1, |gu(x,T)|<1. Further, we determined
solution of the Eg. (1) as the following power
series:

0C,(00) _py F°Cxt)
ot *“  oxt
oC. (x,t 0°C,,(x,t
g(t -0, aox(z o,
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” 3 nc, (X)eq o (Oen (- 2)] 5, (1), (uT)

+k, (T2 ) =K, (X, T)1(xt)

+ky v (X TIVE(X, )=k, (X, TV (x,t)

{gﬂ(x,T)m”l(x’t)}

OX

ﬁ@m(x,t)]

i>1;

OX

=0, 120; D (X,0)=fp,(X), D,i(x,0)=0, i>1.

could be written as

r)cjtcn(u)[k,,,(u,T)IZ(u,r)—k,(u,T)I (u7)]dudr,

o—r

c,(u)f, (u)du, cy(L)=cos(znx/L);

o0, ., U,
2Pl

au

1
C(x,t):gqu:lglcij(x,t).
Substitution of the series into Eq. (1) and

conditions (2) gives us possibility to obtain zero-
order approximation of dopant concentration
Coo(x,t), corrections Cj(x,t) (i =21, j =1) and
conditions for all functions. The equations and
conditions could be written as

aax{gL (x,T)aCi-ﬂ’(X’t)}, i>1;

0 X
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ox | ox |
Solutions of the equations considering been calculated by using the Fourier approach
appropriate boundary and initial conditions have [29,30]. The solutions could be written as:

1 2=
Coo(x’t): E+ Enzzl I:ncC (X)enc(t)’

where €, (t)=exp (-~ z’n’Dt/L?), F,. = Tcn(u)fC (u)du;
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_ 2re Lo C:*u,7)0C,(u,7)
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27w » t C’ ’ oC ’ 2 »
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In this section, we calculate the second-order
approximations of spatio-temporal distributions of
concentrations of dopant and radiation defects. The
second-order approximations are usually enough
good approximation to make qualitative analysis
and to obtain some quantitative results. The result
has been confirmed by comparison with the results
of numerical simulation and experimental results
[12-18,20,21].

3. DISCUSSION

In this section, we analyzed the spatio-temporal
distributions of concentrations of dopant and
radiation defects in the heterostructure from Figurs
1 and 2 by using the appropriate the second-order
approximations from the previous section. We took
into account radiation damage during consideration
dopant redistribution after ion doping of
heterostructure. Figure 3 shows typical distributions
of concentrations of infused dopant in
heterostructure in a direction perpendicular to the
interface between the epitaxial layer and the
substrate. The distributions have been calculated
under condition, when the value of dopant
diffusion coefficient in epitaxial layer was larger
than the value of dopant diffusion coefficient in
substrate. Figure 4 shows a similar distribution of
concentration of dopant corresponding to the ion
doping of the heterostructure. Figures 3 and 4
show that the presence of interface between layers
of heterostructure under above condition gives us
the possibility to obtain thinner field-effect
transistor. At the same time, one can find
increasing of homogeneity of dopant distribution in
doped area.

Where (x) is the approximation function,
which is presented in Figurs 5 and 6 as curve 1.
Optimal annealing time was achieved by
minimization mean-squared error (12).
Dependences of optimal annealing time on
parameters related to diffusion of ion types of
doping are presented in Figurs 7 and 8. Optimal
annealing time which corresponds to ion doping is
smaller than the same time for doping by diffusion.
The reason of this difference is necessary to anneal
radiation defects. Optimization of annealing time
for ion doping of materials should be done only in

the case when dopant does not achieve interface
between layers of heterostructure during annealing
of radiation defects.

1.5 A

Epitaxial laver Substrate

Figure 3. Distributions of concentration of infused
dopant in the heterostructure from Figures 1 and 2.
Increasing the number of curve corresponds to
increasing the difference between values of dopant
diffusion coefficient in layers of heterostructure under
condition, when the value of dopant diffusion
coefficient in epitaxial layer is larger than the value of
dopant diffusion coefficient in substrate. Circles are
experimental data obtained by Suvar, Christensen,
Kuznetsov, and Radamson [31]. Squares are experimental
data obtained by Masse and Djessas [32]

2.0

1

1.5 +
[}
=< 1.0 A
o

Epitaxial layer Substrate
0.5
0.0 T T T
0 L/4 L){Z 3L/4

Figure 4. Distributions of concentration of implanted
dopant in heterostructure from Figures 1 and 2.
Curves 1 and 3 correspond to annealing time @ =
0.0048(L,*+L,*+ L,%)/Dy. Curves 2 and 4 correspond
to annealing time ©=0.0057(L,*+L,*+L,%)/D,. Curves
1 and 2 correspond to homogenous sample. Curves 3
and 4 correspond to heterostructure under condition,
when the value of dopant diffusion coefficient in
epitaxial layer is larger than the value of dopant
diffusion coefficient in substrate. Circles are
experimental data obtained by T. Ahlgren, J. Likonen,
J. Slotte, J. Raisanen, M. Rajatore and J. Keinonen
[33]. Squares are experimental data obtained by T.
Noda [34]
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Figure 5. Spatial distributions of concentration of
infused dopant in heterostructure from Figs. 1 and 2.
Curve 1 is the idealized distribution of dopant. Curves
2-4 are the real distributions of dopant for different
values of annealing time. Increasing the number of
curves corresponds to the increasing of annealing
time
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Figure 7. Dependences of dimensionless optimal
annealing time for doping by diffusion, which have
been obtained by the minimization of mean-squared
error, on several parameters. Curve 1 is the
dependence of dimensionless optimal annealing time
on a/L for &= y=0 for equal to each other values of
dopant diffusion coefficient in all parts of
heterostructure. Curve 2 is the dependence of
dimensionless optimal annealing time on value of

parameter ¢ for a/L=1/2 and &= y=0. Curve 3 is the
dependence of dimensionless optimal annealing time
on value of parameter & for a/L=1/2 and ¢=y=0.
Curve 4 is the dependence of dimensionless optimal
annealing time on the value of parameter y for
a/L=1/2 and ¢=£=0
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Figure 6. Spatial distributions of concentration of
implanted dopant in heterostructure presented in Figs.
1 and 2. Curve 1 is the idealized distribution of
dopant. Curves 2—4 are the real distributions of
dopant for different values of annealing time.
Increasing the number of curves corresponds to the
increasing of annealing time
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dimensionless optimal annealing time on the value of
parameter ¢ for a/L=1/2 and &= y=0. Curve 3 is the
dependence of dimensionless optimal annealing time
on the value of parameter & for a/L=1/2 and ¢=y=0.
Curve 4 is the dependence of dimensionless optimal
annealing time on the value of parameter y for

alL=1/2 and ¢=¢=0
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U =%I[C(x,®)—z//(x)]d X, (12)

where w(x) is the approximation function, which
presented in Figurs 5 and 6 as curve 1. We
determine optimal annealing time by minimization
mean-squared error (12). Dependences of optimal
annealing time on parameters for diffusion ion
types of doping are presented in Figs. 7 and 8.
Optimal annealing time, which corresponds to ion
doping, is smaller than the same time for doping by
diffusion. The reason of this difference is necessity
to anneal radiation defects. Optimization of
annealing time for ion doping of materials should
be done only in this case, when dopant did not
achieve interface between layers of heterostructure
during annealing of radiation defects.

4. CONCLUSION

In this paper, an approach to manufacture thinner
field-effect transistors without p-n-junctions was
considered.  Framework  for  manufacturing
included a heterostructure  with  specific
configuration, doping required parts of the
heterostructure by dopant diffusion or by ion
implantation and optimization of annealing of
dopant and/or radiation defects. The optimization
gave us the possibility to decrease dimensions of
field-effect transistors. An analytical approach was
introduced to model technological processes
without crosslinking concentrations of dopant and
radiation defects on interfaces between layers of
heterostructure.
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