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Abstract: 

It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in 

a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation 

defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions 

framework their system). Due to the optimization, one can also obtain increasing of homogeneity of dopant 

in doped area. In this paper, we consider manufacturing of a field-effect heterotransistor without p-n-

junction. Framework the approach of manufacturing, we consider a heterostructure with specific 

configuration, doping required parts of the heterostructure by dopant diffusion or by ion implantation and 

optimization of annealing of dopant and/or radiation defects. The optimization gives us possibility to 

decrease dimensions of field-effect transistors. We introduce an analytical approach to model technological 

processes without crosslinking concentrations of dopant and radiation defects on interfaces between layers 

of heterostructure. 

Keyword: Field-effect transistors, Decreasing of dimensions of transistors, Analytical approach to model 

transistors, Optimization of technological process. 

 

1. INTRODUCTION 

The development of manufacturing of electronic 

devices causes necessary need to reduce the size of 

integrated circuit elements and their discrete 

analogs [1-7]. To reduce the required sizes of p-n-

junctions and their systems (such transistors and 

thyristors) formed by diffusion and implantation, 

several approaches could be used. First of all, laser 

and microwave types of annealing should be 

considered [8-14]. By using these types of 

annealing, inhomogeneous distribution of 

temperature is created. This gives us the possibility 

to increase sharpness of p-n-junctions with 

simultaneous increasing of homogeneity of 

distribution of dopant concentration in doped area 

[8-14]. In this situation, one can obtain more 

shallow p-n-junctions and at the same time 

decrease dimensions of transistors which include 

into itself the p-n-junctions. The second way to 

decrease dimensions of elements of integrated 

circuits is using of native inhomogeneity of 

heterostructure and optimizing the annealing of 

dopant and/or radiation defects [12-18]. In this 

case, one can obtain increasing of sharpness of p-
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n-junctions and at the same time increasing of 

homogeneity of distribution of dopant 

concentration in doped area [12-18]. Distribution 

of concentration of dopant could also change under 

the influence of radiation processing [19]. In this 

situation, radiation processing could also be used 

to increase the sharpness of single p-n-junction and 

p-n-junctions, which include into their system 

[20,21]. 

In this paper, we consider a heterostructure, 

which consists of a substrate and a multi-section 

epitaxial layer (Figures 1 and 2). Further, we 

consider manufacturing a field-effect transistor 

without p-n-junction in this heterostructure. 

Appropriate contacts are presented in the Figurs 1 

and 2. A dopant has been infused or implanted in 

areas of source and drain before manufacturing the 

contacts to produce required types of conductivity. 

Also, we consider annealing of dopant and/or 

radiation defects to infuse the dopant on required 

depth (in the first case) or to decrease quantity of 

radiation defects (in the second case). Annealing of 

radiation defects gives us possibility to obtain 

spreading of distribution of concentration of 

dopant. To restrict the dopant diffusion into 

substrate and to manufacture more thin structure, it 

is practicable to choose properties of 

heterostructure so that dopant diffusion coefficient 

in the substrate should be smaller than dopant 

diffusion coefficient in epitaxial layer as much as 

possible [12-18]. In this case, it is practicable to 

optimize annealing time [12-18]. If dopant does 

not achieve interface between layers of 

heterostructure during annealing of radiation 

defects, it is practicable to choose additional 

annealing of dopant. The main aims of the present 

paper are (i) modeling of redistribution of dopant 

and radiation defects and (ii) optimization of 

annealing time. Then, manufacturing thinner field-

effect transistor based on using inhomogeneity of 

heterostructure is possible. It should be noted that 

the considered in our paper technological approach 

has not been recently described in literature (see, 

for example, [22-24] and similar works). In this 

situation, the described approach could be 

considered as a new approach. 

 

 

Figure 1. Heterostructure with a substrate and multi-section epitaxial layer. View from top 

 

Substrate

GateSource Drain

Epitaxial layer

 
Figure 2. Heterostructure with a substrate and multi-section epitaxial layer. View from one side  
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2. METHOD OF SOLUTION 

To reach the goals of this study, we determine 

spatio-temporal distribution of concentration of 

dopant. We determine the distribution by solving 

the second Fick’s law: [1-4] 
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Here C(x,t) is the spatio-temporal distribution 

of concentration of dopant; T is the temperature of 

annealing; DС is the dopant diffusion coefficient. 

The value of dopant diffusion coefficient depends 

on properties of materials of heterostructure, speed 

of heating, and cooling of heterostructure (with 

account Arrhenius law). Dependences of dopant 

diffusion on parameters could be approximated by 

the following function [25-28] 
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where DL (x,T) is the approximation of dopant 

diffusion coefficient of coordinate (due to native in 

homogeneity of heterostructure) and temperature 

(due to Arrhenius law); P (x, T) is the limit of 

solubility of dopant; parameter  depends on the 

properties of materials and could be an integer in 

the following interval  [1,3] [28]; V (x,t) is the 

spatio-temporal distribution of concentration of 

radiation vacancies; V
*
 is the equilibrium 

distribution of vacancies. Concentrational 

dependence of dopant diffusion coefficient has 

been described in details by Yu Gotra in [28]. It 

should be noted that using doping of materials by 

diffusion leads to the absence of radiation damage 

1= 2= 0. Spatio-temporal distributions of 

concentrations of radiation defects are determined 

by solving the following system of equations 

[26,27]. 
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with initial condition: 

 (x,0)=f  (x) (5a) 

And boundary conditions: 
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I(x,0)=fI (x), V(x,0)=fV (x). 

 (5b) 

 

 

Here  =I,V; I (x,t) is the spatio-temporal 

distribution of concentration of interstitials; 

D(x,T) is the diffusion coefficient of point 

radiation defects (vacancies and interstitials); terms 

V
2
(x,t) and I

2
(x,t) corresponds to the generation of 

divacancies and diinterstitials; kI,V(x,T), kI,I(x,T) and 

kV,V(x,T) are parameters of recombination of point 

radiation defects and generation their simplest 

complexes (divacancies and diinterstitials). 

Here, spatio-temporal distributions of 

concentrations of divacancies V (x,t) and 

diinterstitials I (x,t) are determined by solving the 

following system of equations [26,27]. 
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with boundary and initial conditions 
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Here DI(x,T) and DV(x,T) are diffusion 

coefficients of divacancies and diinterstitials; 

kI(x,T) and kV (x,T) are parameters of decay of 

complexes of radiation defects. 

To determine spatio-temporal distributions of 

concentrations of point radiation defects, we used 

recently introduced approach [16,18]. To 

framework the approach, we transformed 

approximations of diffusion coefficients of point 

radiation defects to the following form: 

D(x,T)=D0[1+g(x,T)], where D0 is the average 

value of the diffusion coefficients, 0< 1, 

|g(x,T)|1,  =I,V. We also transformed parameters 

of recombination of point defects and generation of 

their complexes in the same form: kI,V(x, 

T)=k0I,V[1+I,V gI,V(x,T)], kI,I(x,T)=k0I,I[1+I,I gI,I(x,T)] 

and kV,V(x,T) = k0V,V [1+V,V gV,V(x, T)], where k01,2 

is the appropriate average values of the above 

parameters, 0I,V<1, 0I,I < 1, 0V,V< 1, | gI,V 

(x,T)|1, | gI,I(x,T)|1, |gV,V(x,T)|1. We introduced 

the following dimensionless variables: 
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Eqs.(4) and conditions (5) results in the following 

form: 
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We determine solutions of Eqs.(8) and 

conditions (9) framework recently introduce 

[16,18]. To framework the approach, we determine 

the solutions as the following power series 
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Substitution of the series Eq. (10) into 

Eqs.(8) and conditions (9) gives us the possibility 
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to obtain equations for the zero-order 

approximations of concentrations of point defects 
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We obtained solutions of the obtained 

equations by the Fourier approach [29,30]. The 

solutions considering appropriate boundary and 

initial conditions could be written as 
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Further, we determined spatio-temporal 

distribution of concentration of complexes of point 

radiation defects. To calculate the distribution, we 

transformed the approximation of diffusion 

coefficient to the following form: 

D(x,T)=D0[1+g(x,T)], where D0 are the 

average values of diffusion coefficient. After this 

transformation, Eq.(6) transforms to the following 

form: 
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Let us determine solutions of the above 

equations as the following power series 
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Substitution of the series Eq. (11) into Eq.(6) 

and considering their conditions gives us the 

possibility to obtain equations for initial-order 

approximations of concentrations of complexes, 

their corrections and conditions for all equations in 

the following form: 
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Solutions of the above equations have been 

obtained by using the Fourier approach [29,30] and 

could be written as 

     





1
0

21
,

n
nn texcF

LL
tx

  

                   





1 0 0

2

, ,,,,
2

n

t L

IIInnnn duduITukuITukucetexcn
L




, 

where    2

0

22 LtDnexpte
n  

 ,    
L

nn
udufucF

0
 

, cn(L) = cos ( n x/L); 

           
 

  










1 0 0

1

2

,
,

2
,

n

t L
iI

nnnni dud
u

u
Tugusetexcn

L
tx 









 , i1, 

where sn(L) = sin ( n x/L). 
Spatio-temporal distribution of concentration 

of dopant was determined by using the recently 

introduced approach. To framework the approach, 

it is necessary to transform approximation of 

dopant diffusion coefficient to the following form: 

DL(x,T)= D0L[1+LgL(x,T)], where D0L is the 

average value of dopant diffusion coefficient, 

0L< 1, |gL(x,T)|1. Further, we determined 

solution of the Eq. (1) as the following power 

series: 
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Solutions of the equations considering 

appropriate boundary and initial conditions have 

been calculated by using the Fourier approach 

[29,30]. The solutions could be written as: 
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In this section, we calculate the second-order 

approximations of spatio-temporal distributions of 

concentrations of dopant and radiation defects. The 

second-order approximations are usually enough 

good approximation to make qualitative analysis 

and to obtain some quantitative results. The result 

has been confirmed by comparison with the results 

of numerical simulation and experimental results 

[12-18,20,21]. 

3. DISCUSSION 

In this section, we analyzed the spatio-temporal 

distributions of concentrations of dopant and 

radiation defects in the heterostructure from Figurs 

1 and 2 by using the appropriate the second-order 

approximations from the previous section. We took 

into account radiation damage during consideration 

dopant redistribution after ion doping of 

heterostructure. Figure 3 shows typical distributions 

of concentrations of infused dopant in 

heterostructure in a direction perpendicular to the 

interface between the epitaxial layer and the 

substrate. The distributions have been calculated 

under condition, when the value of dopant 

diffusion coefficient in epitaxial layer was larger 

than the value of dopant diffusion coefficient in 

substrate. Figure 4 shows a similar distribution of 

concentration of dopant corresponding to the ion 

doping of the heterostructure. Figures 3 and 4 

show that the presence of interface between layers 

of heterostructure under above condition gives us 

the possibility to obtain thinner field-effect 

transistor. At the same time, one can find 

increasing of homogeneity of dopant distribution in 

doped area. 

Where  (x) is the approximation function, 

which is presented in Figurs 5 and 6 as curve 1. 

Optimal annealing time was achieved by 

minimization mean-squared error (12). 

Dependences of optimal annealing time on 

parameters related to diffusion of ion types of 

doping are presented in Figurs 7 and 8. Optimal 

annealing time which corresponds to ion doping is 

smaller than the same time for doping by diffusion. 

The reason of this difference is necessary to anneal 

radiation defects. Optimization of annealing time 

for ion doping of materials should be done only in 

the case when dopant does not achieve interface 

between layers of heterostructure during annealing 

of radiation defects. 

 
Figure 3. Distributions of concentration of infused 

dopant in the heterostructure from Figures 1 and 2. 
Increasing the number of curve corresponds to 
increasing the difference between values of dopant 
diffusion coefficient in layers of heterostructure under 
condition, when the value of dopant diffusion 
coefficient in epitaxial layer is larger than the value of 
dopant diffusion coefficient in substrate. Circles are 
experimental data obtained by Suvar, Christensen, 
Kuznetsov, and Radamson [31]. Squares are experimental 
data obtained by Masse and Djessas [32] 
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Figure 4. Distributions of concentration of implanted 

dopant in heterostructure from Figures 1 and 2. 

Curves 1 and 3 correspond to annealing time  = 

0.0048(Lx
2
+Ly

2
+ Lz

2
)/D0. Curves 2 and 4 correspond 

to annealing time  = 0.0057(Lx
2
+Ly

2
+Lz

2
)/D0. Curves 

1 and 2 correspond to homogenous sample. Curves 3 
and 4 correspond to heterostructure under condition, 
when the value of dopant diffusion coefficient in 
epitaxial layer is larger than the value of dopant 
diffusion coefficient in substrate. Circles are 
experimental data obtained by T. Ahlgren, J. Likonen, 
J. Slotte, J. Räisänen, M. Rajatore and J. Keinonen 
[33]. Squares are experimental data obtained by T. 
Noda [34] 
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Figure 5. Spatial distributions of concentration of 

infused dopant in heterostructure from Figs. 1 and 2. 

Curve 1 is the idealized distribution of dopant. Curves 

2–4 are the real distributions of dopant for different 

values of annealing time. Increasing the number of 

curves corresponds to the increasing of annealing 

time 
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Figure 7. Dependences of dimensionless optimal 

annealing time for doping by diffusion, which have 
been obtained by the minimization of mean-squared 
error, on several parameters. Curve 1 is the 
dependence of dimensionless optimal annealing time 

on a/L for  =  = 0 for equal to each other values of 
dopant diffusion coefficient in all parts of 
heterostructure. Curve 2 is the dependence of 
dimensionless optimal annealing time on value of 

parameter  for a/L=1/2 and  =  = 0. Curve 3 is the 
dependence of dimensionless optimal annealing time 

on value of parameter  for a/L=1/2 and  =  = 0. 
Curve 4 is the dependence of dimensionless optimal 

annealing time on the value of parameter  for 

a/L=1/2 and  =  = 0 
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Figure 6. Spatial distributions of concentration of 

implanted dopant in heterostructure presented in Figs. 

1 and 2. Curve 1 is the idealized distribution of 

dopant. Curves 2–4 are the real distributions of 

dopant for different values of annealing time. 

Increasing the number of curves corresponds to the 

increasing of annealing time 
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Figure 8. Dependences of dimensionless optimal 

annealing time for doping by ion implantation, which 
have been obtained by minimization of mean-squared 
error, on several parameters. Curve 1 is the 
dependence of dimensionless optimal annealing time 

on a/L for  =  = 0 for equal to each the other values 
of dopant diffusion coefficient in all parts of 
heterostructure. Curve 2 is the dependence of 
dimensionless optimal annealing time on the value of 

parameter  for a/L=1/2 and  =  = 0. Curve 3 is the 
dependence of dimensionless optimal annealing time 

on the value of parameter  for a/L=1/2 and  =  = 0. 
Curve 4 is the dependence of dimensionless optimal 

annealing time on the value of parameter  for 

a/L=1/2 and  =  = 0 
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where  (x) is the approximation function, which 

presented in Figurs 5 and 6 as curve 1. We 

determine optimal annealing time by minimization 

mean-squared error (12). Dependences of optimal 

annealing time on parameters for diffusion ion 

types of doping are presented in Figs. 7 and 8. 

Optimal annealing time, which corresponds to ion 

doping, is smaller than the same time for doping by 

diffusion. The reason of this difference is necessity 

to anneal radiation defects. Optimization of 

annealing time for ion doping of materials should 

be done only in this case, when dopant did not 

achieve interface between layers of heterostructure 

during annealing of radiation defects. 

4. CONCLUSION 

In this paper, an approach to manufacture thinner 

field-effect transistors without p-n-junctions was 

considered. Framework for manufacturing 

included a heterostructure with specific 

configuration, doping required parts of the 

heterostructure by dopant diffusion or by ion 

implantation and optimization of annealing of 

dopant and/or radiation defects. The optimization 

gave us the possibility to decrease dimensions of 

field-effect transistors. An analytical approach was 

introduced to model technological processes 

without crosslinking concentrations of dopant and 

radiation defects on interfaces between layers of 

heterostructure. 
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