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Abstract: 
V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging 

techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize 

patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the 

information related to natural modes. A general differential quadrature element method (GDQEM) analysis 

based on layer-wise displacement beam theory was performed to obtain the natural frequencies of V-shaped 

AFM cantilevers with piezoelectric actuators. A finite element analysis was applied to validate the accuracy 

of numerical results. Finally, a parametric investigation of the sensitivity of natural frequencies with respect 

to beam geometry was performed. Simulations show that presented approach is considerably accurate and 

does not need a lot computational costs. Based on the governing equations, general differential quadrature 

method (GDQM) and GDQM could be applied for uniform and stepped plates, respectively. Thus, presented 

approach covers the V-shaped and triangular cantilevers perfectly and could be utilized to derive the 

dynamic response of such systems with a little substitution. 
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1. INTRODUCTION 

The study of dynamic and static behaviour of 

atomic force microscope (AFM) cantilevers has 

become very important for AFM users in recent 

years. Vibration control of AFM cantilevers is of 

great interest, especially nowadays which smart 

structures play a fundamental role in many areas of 

engineering. One of the best instruments for smart 

structure actuating and sensing is the piezoelectric 

patches. Bonding or embedding segments or layers 

of these materials in a laminated structure would 

allow the application of strains by which the 

deformation of the structure could be controlled 

and/or damped. These patches can be used as 

sensors as well as actuators. In order to design and 

implement a vibration control system, an accurate 

system model is usually required. Specifically, 

when the state space method is applied, the 

information related to natural modes is required to 

solve the respective equations for dynamic 

response and various control scheme application. 

V-shaped and triangular cantilevers are 

widely employed in AFM imaging techniques due 

to their stability [1]. As a simple approach, parallel 

beam method was firstly, presented by Albrecht to 

approximate the spring constant of V-shaped 

cantilevers. Consequent to studies of Albrecht, 

Butt and Sader introduced other equations for the 

spring constant calculations [3, 4]. Then, Sader 

proposed another method to enhance the accuracy 

of his modeling method which leads to the results 
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closer to those of finite element methods [5]. 

Although that works responded many questions 

about the V-shaped cantilevers, geometrical 

complexity of these cantilevers has caused most 

investigations and leads to utilizing numerical 

analyses specifically finite element method with 

some developments [6-10]. 

Turner presented a sensitivity evaluation 

analysis of the bending and torsional vibrations of 

V-shaped cantilevers [11]. Chang [12] studied the 

bending vibrations of a rectangular cantilever as a 

function of the cantilever angle. Later in his 

studies, Chang assessed the influence of a damper 

on rectangular cantilever vibration sensitivity [13]. 

Several discussions have been introduced as 

controlling and positioning problem for scanning 

probe devices, especially the dynamic mode AFM 

[14]. The necessity of real-time imaging in the 

nanoworld and the high sensitivity of nanoobjects 

make simulation-based works highly important. 

So, several modeling and simulation works have 

been developed. Nowadays, developing the V-

shaped cantilever arrays and applications have 

been increasingly motivated because of emerged 

technologies and knowledge. As an example, in 

[15], for measuring concentrated masses or 

particles, a novel mass sensor incorporating V-

shaped cross section cantilever was proposed by 

locating the analyte at predefined positions for 

both improving the mass detecting sensitivity and 

reducing the measuring deviation. In [16], the 

resonant frequency of flexural vibration for a V-

shaped AFM cantilever has been investigated using 

the Timoshenko beam theory. It has been 

mentioned that the resonant frequency is sensitive 

to the width ratio and by increasing this ratio, the 

resonant frequency decreases, but critical contact 

stiffness increases, and finally, the variations of the 

height and breadth taper ratios and width ratio are 

affected on the sensitivity to the contact stiffness. 

Also, evaluation of optimum geometric parameters 

and optimum cantilever slope is considered as a 

significant purpose in order to obtain maximum 

flexural sensitivity by using genetic algorithm 

optimization method [17]. Adopting the parameters 

for the design of V-shape micro cantilever 

according to the sample contact stiffness, 

maximum flexural sensitivity can be obtained, so 

that high contrast images are reachable. 

These research works could show the 

significance level of V-shaped cantilevers in micro 

and nano field studies. The purpose of this study is 

to investigate the problem of free vibration 

behavior of V-shaped AFM cantilevers equipped 

with surface-bonded piezoelectric elements. At 

first, the mathematical model of the piezoelectric 

patch is obtained using the Euler-Bernoulli 

continuous model of a cantilever beam. Then, the 

V-shaped AFM beam mathematical model derived 

from parallel beam approximation and based on 

Euler-Bernoulli assumptions, is solved using 

differential quadrature element (DQE) analysis 

technique. This was achieved through discretizing 

the beam into four elements and solving the 

subsequent linear equations of the system. Finally, 

the model is validated utilizing the ANSYS 

commercial software. 

The main contribution of the present work is 

solution of V-shaped cantilever with an 

approximately precise method such that it will 

guarantee the response, and there is no need to 

solve nonlinear problems for more precision. This 

could have a great portion on design and 

manufacturing the advanced arrays and 

configurations of V-shaped and also other shaped 

micro cantilevers.  

2. GOVERNING EQUATIONS 

2.1. Geometrical configuration 

Consider a V-shaped cantilever beam composed of 
a composite substrate with thickness h in its middle 
and four identical piezoelectric patches with 
thickness hp. The patches are perfectly bonded to 
its upper and lower surfaces as illustrated in Figure 
1. Based on the especial applications, the 
configurations maybe varied but the analysis 
procedure will be same. 

The beam is divided into two parts. The first 

part from  with uniform cross 

section and the second part from 

 with varying cross section. 

The tip is assumed to be located at 

 near the end of the cantilever. The PZT 

patches are located at the root of cantilever from 

. 



 

 International Journal of Nanoscience and Nanotechnology 207 

2.2. Equations of motion 

The governing equations of the beam in bending 

vibration and the relevant boundary conditions 

vary in different regions. For more simplification, 

four regions are used to define the governing 

equations and respective boundary conditions. 

Domain decomposition is the fundamental 

approach for this system. Because the beam 

deflection is the most important deformation of V-

shaped AFM cantilevers and due to the 

geometrical complexity, we used the parallel beam 

approximation (PBA) to derive the equations of 

motion. In this method, the skewed parts of the 

beam are considered as parallel Euler-Bernoulli 

beams. To modify the model, the effective length 

of beam in skewed sections is considered as 

follows: 

Le = L / Cos θ (1) 

where θ is the angle of the beam (Figure 1). 

It is assumed that the beam is made of n 

orthotropic laminas which are perfectly bonded 

together. The beam is relatively thin and the Euler-

Bernoulli beam assumptions are acceptable. Based 

on the Euler-Bernoulli thin beam assumptions, 

lateral strains are zero (S2=S3=S4=S5=0). Thus, the 

displacement field can be written as 

 
 

 (2) 

The strains can be written as summation of 

membrane and bending strains [18]. 

 (3) 

The linear constitutive relations for the 

piezoelectric Euler-Bernoulli beam could be given 

by [18]: 

 
 (4) 

For an n-layer one-dimensional beam, 

equation (2.2.4) could be written as: 

 (5a) 

 (5b) 

In these equations, σ and D represent the 

stress and electric displacement; ε and E represent 

strain and electric field; Q and Ɛ represent the 

elastic and dielectric permeability coefficients and 

e is the piezoelectric material coefficient. 

The governing equation for the lateral 

vibration of one-dimensional classic beam is 

expressed as: 

 (6) 

where the moment can be written as: 

 (7) 

 

 

 

(a) (b) 

Figure 1. Schematic view of a PZT patch integrated V-shaped beam; (a) Top view, (b) Side view 
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By using equation (2.2.5a) for an n-layer 

composite beam, we can obtain: 

 

 
(8)

 
Substituting equation (2.2.3) in to the above 

relation, yields: 

 =[  , ].[ ]  (9) 

Due to dimensional symmetry,  

and hence: 

 =  (10) 

By applying the Hamilton’s principle, it can 

be found that: 

 (11) 

where Q*3k is the electrostatic charge on the 

surfaces of piezoelectric layers. It should be noted 

that the in-plane electric fields E1 and E2 are 

assumed zero in the thin piezoelastic laminated 

beam. It can be expressed as [18]:  

 (12) 

Thus 

 (13) 

With the assumption of zero electrostatic 

charge on the piezoelectric layers, the following is 

obtained: 

 (14) 

Using equations (8) and (14), and integrating 

gives: 

 

 =  (15) 

The moment in each cross section of the 

beam is expressed as: 

 

 

(16) 

in which b represents the width of the cross 

sections. Combining equation (2.2.6) and equation 

(2.2.16) gives the equation of motion for the k
th 

piezoelastic layer: 

 (17) 

Now, we consider the beam geometry and 

divide the beam into four elements. The beam 

equation of motion can be derived by applying 

equation (2.2.17) on each element and integrating 

those equations with respect to the thickness. 

For the first element with constant cross 

section we have: 

 (18) 

And the mass-related term is defined as: 

 (19) 

Boundary conditions could be obtained by 

geometrical characteristics of the beam. 

 (20) 

Subsequently for the second element it can 

be written: 

 (21) 

The boundary and compatibility equations 

are defined as: 

 

 

 

 (22) 

In the third element, the cross section varies 

from left to right. According to Figure 2 for an 

arbitrary cross section, it follows that: 

 

 

 (23) 
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Figure 2. Geometry of an arbitrary cross section in the 

third element 

 

 

 

 

 

 

Thus, the equation of motion is derived by 

combining equation (17) and equation (23) as: 

 
(24) 

Boundary and compatibility equations are 

expressed as: 

 

 

 

 (25) 

And finally for the last element: 

 

(26)

 

 

 

 

 

 (27) 

where η
2
 = 1 – b3 /b2. 

2.3. GDQEM Analog 

The differential quadrature (DQ) method is a 

discrete approach towards a direct solution of 

engineering and mathematic governing equations. 

Since it utilizes higher order polynomials in 

general coordinates and approximates a function 

derivative in a given point of its domain directly, it 

is superior to other FD and FE methods. On the 

other hand, high level of accuracy and the 

application convenience of this method have led to 

its increasing popularity. 

By using the DQ technique, the numerical 

statement of the problem does not pass through any 

variational formulation, but deals directly with the 

governing equations of motion. A major drawback 

of the conventional DQ method is its difficulty in 

application to differential equations with multiple 

boundary conditions at boundary points. General 

differential quadrature element method (GDQEM) 

is a more advanced theory that can be used for the 

beams with discontinuities in geometry and 

material properties. Referring to the formulation of 

the equilibrium equations of V-shaped AFM 

cantilevers, the system of fourth-order partial 

differential equations are solved. The discretization 

of the system by means of the GDQEM procedure 

leads to a linear system of equations, where four 

independent variables are involved for each 

element. 

By applying the GDQE method to the 

equation of motion of beam’s first region, it 

follows that: 

 (28) 

And for the boundary conditions: 

 

 (29) 

Finally by discretizing the beam’s equations 

of motion and boundary equations and solving the 

resulted linear system of equations it could be 
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obtained [18]: 

  (30a) 

  (30b) 

where WB and WI are displacement vector of 

boundary and domain nodes, respectively. Also Aij 

represent the coefficient vector of Wj for the n
th 

domain equation. 

By replacing WB from equation (30b) into 

equation (30a), it could be found [18]: 

 (31) 

The above equation is an eigen value 

problem. By solving this equation, natural 

frequencies and mode shapes of the beam could be 

obtained. 

3. NUMERICAL RESULTS AND DISCUSSIONS 

3.1. Comparison and verification- 

rectangular cantilevers 

There exist some numerical solutions for 

electromechanical problems. The finite element 

method (FEM) is commonly used to study the 

behavior of MEMs and even NEMs. Previously, 

validation had been provided by comparison of 

methods with the traditional softwares such as 

ANSYS and ABAQUS. Here, for more 

clarification, comparisons for the static and 

dynamic responses have made with the Green's 

function approach and ANSYS software. In 

ANSYS, the shell element has been used. These 

comparisons clearly show the efficiency of the 

proposed model. Table 1 lists the properties and 

dimensions of beams and plates that have been 

used for comparison. Table 2 lists the static 

deflection of the midpoint of beam and plate due to 

the point and uniformly distributed loads. For each 

problem, simulation error of GDQM is of 

considerably lower order compared to the FEM. 

3.2. Dynamic responses 

Dynamic response of A-beam (middle point) under 

the SS-SS boundary conditions due to a uniformly 

distributed load (as 100×Sin (10×t)) has been 

compared in Figure 2. Figure 3 shows the dynamic 

response of A-plate (middle point) under SS-SS-

SS-SS boundary conditions, due to a uniformly 

distributed load (as 100×Sin (10×t)). In Figure 2, 

three approaches resulted in same responses, when 

in the case of plate (Figure 3), the GDQ method 

leads to more accurate estimation. 

Consequently, according to more accuracy of 

GDQ, it is used for the dynamic response in nano 

metric operations. As already discussed, the exact 

solution cannot be provided in the case of other 

boundary conditions. On the other hand, however, 

the GDQ results could be compared with FEM 

with an intrinsic guarantee in accuracy for both 

static and dynamic responses. Based on the 

mentioned comparisons, reliability of the presented 

approaches is satisfied. So, it can be used to study 

the various parameter effects on the performance 

of MEMs and NEMs. 
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Figure 3. Dynamic response for beam; comparison of 

exact, ANSYS and GDQ models 

3.3. Comparison and verification– V-shaped 

cantilevers 

To validate the present DQEM analysis, we 

consider a graphite-epoxy V-shaped beam with 

PZT actuators. The first three non-dimensional 

natural frequencies (NDNF) for given materials 

and dimensions in Table 1, are presented in Table 

2. 

Note that: 
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 Table 1. Properties of beams and plates used for simulations 

Problem Dimensions (m) Module of 

Elasticity (G Pa) 

Density 

(Kg/m3) 

Configuration 

A-Beam 5×0.04×0.04 70 2800 Simple 
B-Beam 2.5×0.04×0.04,2.5×0.04×0.06 70 2800 Step 
A-Plate 1×1×0.03 70 2800 Simple 
B-Plate 0.5×1×0.03,0.5×1×0.05 70 2800 Step 

     Problem Dimensions(m) Piezo Type Material Configuration 
C-Plate 0.1×.05×.0025 PZT-5H Gr/Epoxy Simple 
D-Plate 0.05×0.05×0.0025, 0.05×0.05×0.0015 PZT-5H Gr/Epoxy Step 

 

Table 2. Comparison of present approach, exact and ANSYS results for static problem 

System and BC Loading Exact ANSYS GDQM 

    Er. (Ans-

Exct) (%) 

 (mm) Er. (DQ-

Exct) (%) 

A-Beam, SS-SS Point load on mid 17.43861607 17.386 mm 0.30172 17.43861 mm 0 

A-Beam, SS-SS Distributed Load 54.49567 54.278 mm 0.39943 54.49567 mm 0 

A-Plate, SS-SS-SS-SS Distributed Load 2.34713e-3 2.5654e-3 mm 9.299442 2.35808e-3 mm 0.466 

System and BC Loading  ANSYS GDQEM Er.(Ans-DQ) (%) 

B-Beam, C-F Point load on end  0.025835 m 0.025834986 0.0 

B-Beam, C-SS Point load on mid  0.0040965 m 0.00410869 0.3 

B-Beam, C-C Point load on mid  0.0025456 m 0.00255845 0.5 

B-Beam, C-F uniform line load  0.17856 m 0.178019 m 0.3 

B-Beam, C-SS uniform line load  0.012003 m 0.01200315 m 0.0 

B-Beam, C-C uniform line load  0.0063912 m 0.006396139 m 0.0 

B-Plate, C-C-C-F uniform line load  1.0852 µm 1.113778 µm 2.0 

B-Plate, C-C-C-C uniform line load  0.69290 µm 0.711344 µm 2.0 

B-Plate, C-SS-SS-C uniform line load  1.0432 µm 1.07712 µm 3.1 

  

3.4. Study of convergence 

To demonstrate the stability, the rate of 

convergence and accuracy of the results, the first 

three non-dimensional natural frequencies are 

illustrated in Figure 3. Because the order of system 

equations is four, the smallest number of grid 

points for each element is five. By increasing the 

number of grid points of elements, it is observed 

that the results have excellent rate of convergence 

without instability for an increasing number of grid 

points. Also by comparing the results with FEM 

solutions, one can conclude that the solutions have 

excellent accuracy with a few number of grid 

points. 

 

3. 5. Effect of the geometrical parameters 

on the natural frequency 

After validating the present model, a parametric 

investigation was initiated. In order to investigate 

the effect of length, one non-dimensional 

parameter Λ was used. By using this parameter, all 

the results are independent of the beam and piezo 

patches length. The length parameter is defined as: 

 

 
Figure 4 shows the variation of the first three 

non-dimensional frequencies in comparison with 

the beam non-dimensional length. The results 

indicate, as expected, that with increasing the Λ, 

due to piezoelectric stiffening effect, NDNF has 

increased. Also it is obvious that the length 

parameter has considerable effect on the higher 

natural frequencies. 

The second geometrical parameter is beam 

non-dimensional width Δ, which is defined as the 

ratio of skewed arm width to the distance between 

arms at the beam root: 
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Figure 4. Dynamic response for plate; comparison of 

exact, ANSYS and GDQM 

 

It is concluded from Figure 5 that increasing 

beam width causes an increasing effect on the 

NDNF. Figure 6 shows variation of NDNF in 

respect to the non-dimensional thickness H, which 

is expressed as the actuator thickness to beam 

thickness. 

 

 
Figure 5. Variation of first three NDNF in comparison 

with No. of grid points 

 

As it is obvious from Figure 6, non-

dimensional thickness has a maximum effect on 

NDNF at H≈ 0.3. Since at the beginning, with 

increasing the thickness, the overall beam stiffness 

will raise, but by more increase in thickness, the 

local actuators’ stiffness grow extremely and 

actuators act as a solid boundary. So the effective 

length of beam and subsequently NDNF will 

decrease. 

 

 
Figure 6. Effect of beam length on NDNF (θ=30°) 

 

It is concluded from beam geometry that 

cantilever angle does not have an independent 

effect and its variation is directly related to beam 

length. As it is observed from Table 3, with 

increasing the beam angle, the effective beam 

length has increased and subsequently the non-

dimensional length and NDNF has decreased. 

 

Table 3. Material properties used for T300/5208 

graphite-epoxy and PZT 

Property Carbon/epoxy PZT 

E1 (GPa) 154.0 63.0 

E2 (GPa) 11.13 63.0 

υ12 0.304 0.3 

G12 (GPa) 6.98 24.2 

G13 (GPa) 6.98 24.2 

G23 (GPa) 3.36 24.2 

Ply thickness (mm) 

ρ (kg/m
3
) 

e31 (N/V mm) 

0.3 

1560 

- 

0.1 

7600 

0.0229 

   

Figure 7 shows the variation of first three 

NDNF versus composite layer fibers angle. The 

results indicate that the NDNF is symmetric with 

respect to the angle about 90. 

 

 
Figure 7. Effect of beam width on NDNF (θ=30°) 
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Figure 8. Variation of NDNF vs. Fibers angle (θ=30°) 

 

 

 

Table 4. Comparison of non-dimensional natural frequencies obtained with present method and ANSYS software 

 DQEM ANSYS Difference 

1
st 

 NDNF 1.0237 1.0528 2.8% 

2
nd

 NDNF 5.5314 5. 6199 1. 6% 

3
rd 

 NDNF 15.730 15.921 1.2% 

 

Table 5. First three NDNF versus beam angle 

2θ (Degree) 30° 45° 60° 75° 90° 

1
st
 NDNF 1.0237 1.0223 1.0202 1.0182 1.0158 

2
nd

 NDNF 5.5314 5.5289 5.5244 5.5200 5.5162 

3
rd

 NDNF 15.730 15.656 15.561 15.455 15.352 

 

4. CONCLUSIONS 

In this study, the bending-free vibration of a V-

shaped AFM cantilever which partially bonded 

with piezo actuators was investigated. We used the 

GDQE method for simultaneous simplicity and 

accuracy to analyze the mathematical model 

derived from parallel beam approximation and 

based on Euler-Bernoulli assumptions. 

Convergence and comparison studies were 

performed to verify the accuracy and merit of the 

present method. The numerical results show the 

dependency of fundamental natural frequencies to 

the geometrical parameters of the beams. 

Ultimately, it was observed that geometrical 

parameter may significantly affect the free 

vibration behavior. 
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