Structural and Optical Properties Study of Ag and Mg co-Doped TiO2 by Comparison between DFT Calculation with Experimental Results

Document Type : Research Paper


Department of Chemistry, Bonab Branch, Islamic Azad University, 55518/134, Bonab, Iran


   This work aims to study the structure and optical properties of TiO2 nanoparticles co-doped with Ag and Mg. Density functional theory (DFT) calculations are performed to study the influence of Ag and Mg doping on the geometry, electronic structure, and photophysical properties of TiO2. The calculated band gap of TiO2 doped with AgMg is 2.955 eV, which is in good agreement with the experiment. In addition, an almost good correlation was found between the calculated optical properties (such as the band structure) and the experimental UV absorption. The results of this comparative study can be used to develop TiO2-based photocatalysts and analyze microscopic information about the electronic structure of activated TiO2 nanoparticles.


Main Subjects

  1. Kubacka, A., Fernandez-Garcia, M., Colon, G., “Advanced nanoarchitectures for solar photocatalytic applications”, Rev., 112 (2012) 1555-1614.
  2. Thomas, A. G., Syres, K.L., “Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces”, Soc. Rev., 41 (2012) 4207-4217.
  3. Wu, Q., van de Krol, R., “Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant”, Am. Chem. Soc., 134 (2012) 9369-9375.
  4. Tada, H., Kiyonaga, T., Naya, S.I., “Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium (IV) dioxide”,  Soc. Rev., 38 (2009) 1849-1858.
  5. Tachikawa, T., Majima, T., “Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions”, Soc. Rev., 39 (2010) 4802-4819.
  6. Lewis, L. N., “Chemical catalysis by colloids and clusters”, Rev., 93 (1993) 2693-2730.
  7. Chen, J., Kubota, J., Wada, A., Kondo, J. N., Domen, K., “Time-resolved sum frequency generation reveals adsorbate migration between different surface-active sites on titanium oxide/Pt(111)”, J. Am. Chem. Soc., 131 (2009) 4580-4581.
  8. Nakamura, R., Tanaka, T. Nakato, Y., “The mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes”, Phys. Chem. B ., 108 (2004) 10617-10620.
  9. Irie, H., Watanabe, Y. Hashimoto, K., “Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst”, Lett., 32 (2003) 772-773.
  10. Ohno, T., Mitsui, T. Matsumura, M., “Photocatalytic activity of S-doped TiO2 photocatalyst under visible light”, Lett., 32 (2003) 364-365.
  11. In, S., Orlov, A., Berg, R., García, F., Pedrosa-Jimenez, S., Tikhov, M. S., Wright, D. S. Lambert, R.M., “Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts”, Am. Chem. Soc., 129 (2007) 13790-13791.
  12. Neppolian, B., Wang, Q., Jung, H. Choi, H., “ Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: Characterization, properties, and 4-chlorophenol removal application”, Sonochem., 15 (2008) 649-658.
  13. Sun, W. T., Yu, Y., Pan, H. Y., Gao, X. F., Chen, Q. Peng, L. M., “ CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes “,  Am. Chem. Soc., 130 (2008) 1124-1125.
  14. Lu, J., Su, F., Huang, Z., Zhang, C., Liu, Y., Ma, X. Gong, J., “N-doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation”, RSC Adv., 3 (2013) 720-724.
  15. Tang, B., Chen, H., Peng, H., Wang, Z. Huang, W., “Graphene modified TiO2 composite photocatalysts: Mechanism, progress, and perspective”, Nanomater., 8 (2018) 105.
  16. Abdul Aziz, N. S., Isa, N., Osman, M. S., Wan Kamis, W. Z., So’aib, M. S., Mohd Ariff, M. A., “A Mini Review on the Effects of Synthesis‎ Conditions of Bimetallic Ag/Si‎ Nanoparticles on Their Physicochemical‎ Properties”, J. Nanosci. Nanotechnol., 18 (2022.) 219-232.
  17. Soumik, S., Abhinandan, M., Tanujjal, B., Karthik, L., Achintya, S., Joydeep, D. Kumar, P.S., “Hematoporphyrin–ZnO Nanohybrids: Twin Applications in Efficient Visible-Light Photocatalysis and Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces, 4 (2012) 7027-7035.
  18. Vercelli, B., Zotti, G., Berlin, A., Pasini, M., Botta, C., Gerbasi, R., Nelson, T.L. McCullough, R.D., “Oligo (poly) thiophene sensitization of cdse nanocrystal and TiO2 polycrystalline electrodes: a photoelectrochemical investigation”, Phys. Chem. C., 116 (2012) 2033-2039.
  19. Li, X., Hou, Y., Zhao, Q. Chen, G., “Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode”, Langmuir, 27 (2011) 3113-3120.
  20. Tada, H., Fujishima, M. Kobayashi, H., “Photodeposition of metal sulfide quantum dots on titanium (IV) dioxide and the applications to solar energy conversion,  Soc. Rev., 40 (2011) 4232-4243.
  21. Asahi, R.Y.O.J.I., Morikawa, T.A.K.E.S.H.I., Ohwaki, T., Aoki, K. Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides”, , 293 (2001) 269-271.
  22. Irie, H., Watanabe, Y. Hashimoto, K., “Nitrogen-concentration dependence on photocatalytic activity of TiO2-x N x powders”, Phys. Chem. B., 107 (2003) 5483-5486.
  23. Khan, S.U., Al-Shahry, M. Ingler Jr, W.B., “Efficient photochemical water splitting by a chemically modified n-TiO2”, Sci., 297 (2002) 2243-2245.
  24. Thompson, T.L. Yates, J.T., “Surface science studies of the photoactivation of TiO2 new photochemical processes”, Rev., 106 (2006) 4428-4453.
  25. Qiu, X. Burda, C., “Chemically synthesized nitrogen-doped metal oxide nanoparticles”, Phys., 339 (2007) 1-10.
  26. Talat-Mehrabad, J., Khosravi, M., “Modirshahla, N. Behnajady, M.A., Sol–gel preparation and characterization of Ag and Mg co-doped nano TiO2: efficient photocatalytic degradation of CI Acid Red 27”, Chem. Intermed., 42 (2016) 595-609.
  27. Xu, J., Ao, Y., Fu, D. Yuan, C., “Synthesis of fluorine-doped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light”, Phys. Chem. Solids., 69 (2008) 2366-2370.
  28. Khan, R., Kim, S. W., Kim, T. J. Nam, C. M., “Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles”, Chem. Phys., 112 (2008) 167-172.
  29. Buddee, S., Wongnawa, S., Sirimahachai, U. Puetpaibool, W., “Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M (III) ions (M= Cr and Fe)”, Chem. Phys., 126 (2011) 167-177.
  30. Meng, Q., Wang, T., Liu, E., Ma, X., Ge, Q. Gong, J., “Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals”, Chem. Chem., 15 (2013) 9549-9561.
  31. Haitosa, H. H., Tesfamariam, B. B., Gultom, N. S., Kuo, D. H., Chen, X., Wu, Y.N. Zelekew, O. A., “Stephania abyssinica leaf extract mediated (Mn, Ni) co-doped ZnO catalyst synthesis for the degradation of organic dye”, Mol. Liq., 368 (2022) 120666.
  32. Eslami, A., Amini, M. M., Yazdanbakhsh, A. R., Mohseni‐Bandpei, A., Safari, A. A. Asadi, A., “N, S co‐doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non‐steroidal anti‐inflammatory drugs in water: a comparative study”, Chem. Technol. Biotechnol., 91 (2016) 2693-2704.
  33. Sheikholeslami, M., “Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for the expedition of melting”, Energy Mater Sol. Cells., 245 (2022) 111856.
  34. Sheikholeslami, M. Ebrahimpour, Z., “Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape”, J. Therm. Sci., 176 (2022) 107505.
  35. Sheikholeslami, M., “Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles”, Energy Storage., 52 (2022) 104954.
  36. Yashwanth, H. J., Rondiya, S. R., Dzade, N. Y., Hoye, R. L., Choudhary, R. J., Phase, D. M., Dhole, S. D. Hareesh, K., “Improved photocatalytic activity of TiO2 nanoparticles through nitrogen and phosphorus co-doped carbon quantum dots: an experimental and theoretical study”, Chem. Chem. Phys., 24 (2022) 15271-15279.
  37. Chen, Y., Wu, J., Xu, Z., Shen, W., Wu, Y. Corriou, J. P., “Computational assisted tuning of Co-doped TiO2 nanoparticles for ammonia detection at room temperatures”, Surf. Sci., 601 (2022) 154214.‏
  39. Tachikawa, T. Majima, T., “Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions”, Soc. Rev., 39 (2010) 4802-4819.
  40. Jitputti, J., Pavasupree, S., Suzuki, Y. Yoshikawa, S., “Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method”, Solid State Chem., 180 (2007) 1743-1749.
  41. Chiarello, G. L., Selli, E. and Forni, L., “Photocatalytic hydrogen production over flame spray pyrolysis-synthesized TiO2 Au/TiO2”,  Catal. B., 84 (2008) 332-339.
  42. Karakitsou, K.E. Verykios, X.E., “Effects of alter valent cation doping of titania on its performance as a photocatalyst for water cleavage”, Phys. Chem. B., 97 (1993) 1184-1189.
  43. Wu, H.C., Lin, S.W. Wu, J.S., “Effects of nitrogen concentration on N-doped anatase TiO2: density functional theory and Hubbard U analysis”, Alloys Compd., 522 (2012) 46-50.
  44. Liu, H., Liu, G. Shi, X., “N/Zr-codoped TiO2 nanotube arrays: fabrication, characterization, and enhanced photocatalytic activity”, Colloids Surf. A: Physicochem. Eng. Asp., 363 (2010) 35-40.
  45. Liu, H., Liu, G. Zhou, Q., “Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity”, Solid State Chem., 182 (2009) 3238-3242.
  46. Zhang, H., Tan, K., Zheng, H., Gu, Y. Zhang, W.F., “Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen”, Chem. Phys., 125 (2011) 156-160.
  47. Segall, M. D., Lindan, P. J., Probert, M. A., Pickard, C. J., Hasnip, P.J., Clark, S.J. Payne, M.C., “First-principles simulation: ideas, illustrations, and the CASTEP code”, Condens. Matter Phys., 14 (2002) 2717.
  48. Meunier, M. Robertson, S., “Materials Studio 20th Anniversary”, Mol Simul., 47 (2021) 537-539.
  49. Perdew, J. P., Burke, K. Ernzerhof, M., “Generalized gradient approximation made simple”, Rev. Lett., 77 (1996) 3865.
  50. Vanderbilt, D., “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Rev. B., 41 (1990) 7892.
  51. Monkhorst, H.J. Pack, J.D., “Special points for Brillouin-zone integrations”, Rev. B., 13 (1976) 5188.
  52. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. Sutton, A. P., “Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study”, Rev. B., 57 (1980) 1505.
  53. Shao, G., “Red Shift in manganese-and iron-doped TiO2: a DFT+ U analysis”, Phys. Chem. C., 113 (2009) 6800-6808.
  54. Reddy, K. H., Martha, S. Parida, K. M., “Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation”, Inorganic Chemistry, 52 (2013) 6390-6401.
  55. Rad, F. A. Rezvani, Z., “Preparation of cubane-1, 4-dicarboxylate–Zn–Al layered double hydroxide nanohybrid: comparison of structural and optical properties between experimental and calculated results”, RSC Adv., 5 (2015) 67384-67393.