Optical, Thermal and Magnetic Properties ‎of Strontium Ferrite Nanoparticles

Document Type : Research Paper


1 Department of Nanotechnology, Swarnandhra College of Engineering & Technology, ‎Narsapur-534 280, West Godavari, Andhra Pradesh, India‎

2 Department of Physics, Indian Arts & Science College, Tiruvannamalai (TN), India‎

3 Department of Nanoscience and Technology, Alagappa University, Karaikudi (TN), India


   This study endeavors to investigate the influence of calcination temperatures (650, 750 & 850°C) on the strontium ferrite (SrFe2O4) nanoparticles synthesized by the co-precipitation method. The prepared powder samples were characterized by various measurement techniques such as X-ray diffractometer (XRD), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Initially, the XRD patterns were confirmed the presence of spinel SrFe2O4 phases. Overall, the number of diffraction peaks increased due to the enhancement of calcination temperature. The SEM morphological features are shown the spherical-shaped nanoparticles with less agglomeration. Considerably, the agglomeration between the nanoparticles increased due to the higher calcination temperatures. However, the structural and morphological investigation was helpful and carried out for the TGA and VSM investigation. At 850°C calcination temperature, TGA revealed 5.8% of weight loss and VSM endorsed the magnetic properties such as high saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) come out to be 37.26 emu/g, 19.788 emu/g and 6188.4 Oe, respectively.


Main Subjects

  1. Chaves de Abreu, W., Moraes, A. F., Nascimento Reis, R. Y., Pinto, B. F., Rodarte de Moura, C. V., Nicolodr, S., Miranda de Moura, E., “Magnetic materials enriched with strontium: a study of the use as catalysts in the transesterification reaction of babassu oil”, Res., 22 (2019) 1-8.
  2. Ghasemi, E., Ghahari, M., "Synthesis of silica coated magnetic nanoparticles", J. Nanosci. Nanotechnol., 12 (2015) 133-137.
  3. Peiravi, M. M., Ashabi, A., “Magneto effects on Fe3O4 nanoparticles through the triangular and rectangular baffles on thread stretching surface for rotary seals in computer hardware”, J. Nanosci. Nanotechnol., 18 (2022) 93-98.
  4. Saravanan, S., Dubey, R. S., “Synthesis of SiO2 nanoparticles by sol-gel method and their optical and structural properties”, Solid State Sci., 4 (2002) 175-182.
  5. Ganjali, M., Ganjali, M., Eskandari, A., Aminzare, M., “Effect of heat treatment on structural and magnetic properties of nanocrystalline SrFe12O19 hexaferrite synthesized by co-precipitation method”, Adv. Mater. Process., 1 (2013) 41–48.
  6. Guo, Z. B., Ding, W. P., Zhong, W., Zhang, J. R., Du, Y. W., “Preparation and magnetic properties of SrFe12O19 particles prepared by the salt-melt method”, Magn. Magn. Mater., 175 (1997) 333–336.
  7. Fang, J., Wang, J., Gan, L. M., Ng S. C., Ding, J., Liu X., “Fine strontium ferrite powders from an ethanol-based microemulsion”, Am. Ceram. Soc., 83 (2000) 1049–1055.
  8. Dang, T. M. H., Trinh, V. D., Bui, D. H., Phan, M. H., Huynh, D. C., “Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties”, Nat. Sci. (Nanosci Nanotech), 3 (2012) 25015-1-7.
  9. Kanagesan, S., Hashim, M., Jesurani, S., Kalaivani, T., Ismail, I., Ahmod, C. S., “Effect of microwave sintering on microstructural and magnetic properties of strontium hexaferrite using sol-gel technique”, Mater. Sci. Mater. Electron., 24 (2013) 3881–3884.
  10. Azis, R. S., Sulaiman, S., Ibrahim, I. R., Zakaria, A., Hassan J., Che Muda, N. N., Nazlan, R., Saiden, N. M., Fen, Y. W., Mustaffa, M. S., Matori, K. A., “Influence of pH adjustment parameters for sol-gel modification on structural, microstructure and magnetic properties of nanocrystalline strontium ferrite”, Nanoscale Res. Lett.,13 (2018)1-13.
  11. Godara, S. K., Kaur, V., Narang, S. B., Singh, G., Singh, M., Bhadu, G. R., Chaudhari, J. C., Babu, P. D., Sood, A. K., “Tailoring the magnetic properties of M-type strontium ferrite with synergistic effect of co-substitution and calcinations temperature”, Asian Ceram. Soc., 9 (2021) 686-698.
  12. Sato, H., Umeda, T., “Grain growth of strontium ferrite crystallized from amorphous phases”, Jpn. I. Met. Mater., 34 (1993) 76–81.
  13. Ding, J., Miao, W. F., Mccormick, P. G. et al., “High-coercivity ferrite magnets prepared by mechanical alloying”, Alloys Compd., 281 (1998) 32–36.
  14. Perelshtein, I., Perkas, N., Magdassi, S., et al., “Ultrasound-assisted dispersion of SrFe12O19 nanoparticles in organic solvents and the use of the dispersion as magnetic cosmetics”, Nanopart. Res., 10 (2008) 191–195.
  15. Nagarajan, R., Chien-Chung, W., “Theory of surfactant aggregation in water/ethylene glycol mixed solvents”, Langmuir, 16 (2000) 5242-5251.
  16. Ghahfarokhi, S. E. M., Shobegar, E. M., “An investigationvof the ethylene glycol surfactant on the structural, microstructure, magnetic and optical properties of SrFe2O4 nanoparticles”, Magn. Magn. Mater., 495 (2020) 165866-1-7.
  17. Zafer, M. N., Amjad, M., Tabassum, M., Ahmad, I., Zubair, M., “SrFe2O4 nanoferrites and SrFe2O4/ground eggshell nanocomposites: Fast and efficient adsorbents for dyes removal”, Clean Prod., 199 (2018) 983-994.
  18. Yasmin, N., Inam, I., Malik, I. A., Zahid, M., Ashiq, M. N., Abdulsatar, S., Safdar, M., Mirza, M., “Structural and magnetic properties of Cr-doped strontium spinel ferrite SrFe2O4 by sol-gel auto-combustion method”, Physica B Condens. Matter., 550 (2018) 90-95.
  19. Zhang, D., Zhang, L., “Ultrasonic-assisted sol-gel synthesis of rugby-shaped SrFe2O4/reduced graphene oxide hybrid as versatile visible light photocatalyst”, Taiwan Inst. Chem. E., 69 (2016) 156-162.
  20. Pardeshi, S. K., Pawar, R. Y., “SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene”, Mol. Catal A-Chem., 334 (2011) 35-43.
  21. Ghahfarokhi, S.E.M., Shobegar, E.M., “Influence of pH on the structural, magnetic and optical properties of SrFe2O4 nanoparticles”, Mater. Res. Technol., 9 (2020) 12177-12186.
  22. Chen, Y., Wu, Q., Bu, N., Chen, M., J. Wang, Song, Y., “Immobilization of black TiO2-X/SrFe2O4 heterojunction on diatomaceous earth as magnetic visible-light-driven photocatalyst for efficient ibuprofen mitigation”, Alloy Compd., 858 (2021)157728-1-15.
  23. Karahroudi, Z. H., Hedayati, K., Goodarzi, M., “Green synthesis and characterization of hexaferrite strontium-perovskite strontium photocatalyst nanocomposites”, Main Group Met. Chem., 43 (2020) 26-42.
  24. Ze Wu, Zhang, R., Yu, Z., Shan, L., Dong, L., Zhang, X., “The magnetic properties of permanent strontium ferrite doped with rare-earth by chemical co-precipitation method”, Ferroelectrics, 529 (2018) 120-127.
  25. Kahlenberg, V., Fischer, R. X., “Structural characterization of strontium monoferrite, a new stuffed framework compound”, Solid State Sci., 3 (2001) 433-439.
  26. Berthet, P., Berthon, J., Heger, G., Revcolevschi, A., “Structure of metastable strontium ferrite”, Res. Bull., 27 (1992) 919-924.
  27. Ghahfarokhi, S. E. M., Shobegar, E. M., “An investigation of the ethylene glycol surfactant on the structural, microstructure, magnetic and optical properties of SrFe2O4 nanoparticles”, Magn. Magn. Mater., 495 (2020) 165866-1-7.
  28. Wu, K. H., Chang, Y. C., Chang, T. C., Chiu, Y. S., Wu, T. R., “Effect of SiO2 content and
    solution pH in raw materials on Ni-Zn ferrite magnetic properties”, Magn. Magn. Mater., 283 (2004) 380–384.
  29. Wu, W., Jiang, Ch. Z. H., Roy, V. A. L., “Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications”, Nanoscale, 8 (2016) 19421–19474.
  30. Bayoumy, W. A. A., “Synthesis and characterization of nano-crystalline Zn-substituted
    Mg–Ni–Fe–Cr ferrites via surfactant-assisted route”, Mol. Struct., 1056–1057 (2014) 285–291.
  31. Kurtan, U., Topkaya, R., Baykal, A., Toprak, M. S., “Temperature dependent magnetic
    properties of CoFe2O4/CTAB nanocomposite synthesized by sol–gel auto-combustion technique”, Int., 39 (2013) 6551–6558.
  32. Sivanadhan, T., Saravanan, S., “Temperature influence on strontium ferrite nanoparticles prepared by chemical co-precipitation method”, Wulfenia, 28 (2021)39-45.
  33. Panchal, N. R., Jotania, R. B., “Effect of heat treatment on microstructure and magnetic properties of strontium hexaferrite nanoparticles prepared in presence of non-ionic surfactant”, Solid State Phenom., 202 (2013) 193-205.
  34. Jimenez-Miramontes, J. A., Dominquez-Arvizu, J. L., Salinas-Gutierrez, J. M., Melendez-Zaragoza, M. J., Lopez-Ortiz, A., Collins-Martinez, V., “Synthesis, characterization and photocatalytic evaluation of strontium ferrites towards H2 production by water splitting under visible light irradiation”, J. Hydrogen Energ., 42 (2017) 30257-30266.
  35. Saleh, H. I., “Reaction mechanisms of strontium ferrites synthesis”, Chin. Chem. Soc., 49 (2002) 341-348.
  36. Vogel, R. H., Evens, B. J., “Solid state- and magneto-chemistry of the SrO-Fe2O3 System”, Magn. Magn. Mater., 13 (1979) 294-300.
  37. Mishra, S., Kumari, S., Kumar, P., Samanta, S. K., “Microwave synthesized strontium hexaferrite 2D sheets as versatile and efficient microwave catalysts for degradation of organic dyes and antibiotics”, Total Environ., 790 (2021) 147853.
  38. Chakradhary, V. K., Akhtar, M. J., “Highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications”, B: Eng, 183 (2020) 107667.
  39. Pardeshi, S. K., Pawar, R. Y., “SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene”, Mol. Catal. A: Chem., 334 (2011) 35–43.
  40. Javidan, A., Ramezani, M., Sobhani-Nasab, A., Hosseinpour-Mashkani, S. M., “Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor”, Mater. Sci: Mater. Electron., 26 (2015) 3813-3818.
  41. Maddahfar, M., Ramezani, M., Hosseinpour-Mashkani, S. M., “Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties”, Phys. A., 122 (2016) 752.
  42. Javidan, A., Rafizadeh, S., Hosseinpour-Mashkani, S. M., “Strontium ferrite nanoparticles study: Thermal decomposition synthesis, characterization, and optical and magnetic properties”, Sci. Semicon. Proc., 27 (2014) 468-473.
  43. Sobhani-Nasab, A., Mahnaz, M., Hosseinpour-Mashkani, S. M., “Ce(MoO4)2 nanostructures: Synthesis, characterization, and its photocatalyst application through the ultrasonic method”, Mol. Liq., 216 (2016) 1-5.
  44. Hosseinpour-Mashkani, S. M., Mahnaz, M., Sobhani-Nasab, A., “Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles”, Journal of Electronic Materials, 45 (2016) 3612-3620.