A Mini Review on the Effects of Synthesis ‎Conditions of Bimetallic Ag/Si ‎Nanoparticles on Their Physicochemical ‎Properties

Document Type : Research Paper

Authors

1 Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau ‎Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

2 Waste Management and Resource Recovery (WeResCue) Group, Centre for Chemical ‎Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang ‎Pauh, Pulau Pinang, Malaysia ‎

3 EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-‎CORE), Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan ‎Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia ‎

Abstract

   In recent decades, nanotechnology-based treatments have made significant strides. Compared to monometallic nanoparticles, bimetallic nanoparticles have gained a great deal of technological and scientific interest due to their superior properties in various applications, which include the treatment of infectious disorders. Bimetallic nanoparticles are created by combining two distinct metals. Among the several bimetallic nanoparticles, silver-silica (Ag/Si) composites hold the most promise for fixing this problem. Ag/Si composites can be manufactured in many shapes, sizes, and structures by supporting them on their organic or inorganic counterparts. The characteristics of Ag/Si composites are superior to those of bimetallic nanoparticles. There are numerous obstacles involved with the characterization of composite materials. Due to the nanomaterials' strong reactivity and high accessible surface area, they are typically unstable and susceptible to coarse agglomeration. It is advised that the surface of nanoparticles be modified to prevent aggregation and agglomeration. Nanomaterials' behavior may impact the physicochemical properties of aggregates. This study examines the parameters that influence the synthesis of Ag/Si under varying conditions, including the effect of initial concentration of metal precursor, reaction time, reaction temperature, and calcination temperature. Based on several prior studies, the properties of the produced Ag/Si composites were subsequently reviewed via transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), energy dispersive X-ray (EDX), and Fourier transform infra-red (FTIR). The highlighted physicochemical properties are shape, crystallinity, and compositions. As a result of their decreased size and increased surface area, Ag/Si composites are widely utilized as catalysts. Drug delivery, water filtration, and catalysis are some of the applications of silver-silica nanocomposites.

Keywords

Main Subjects


  1. Silva, G. A., “Introduction to nanotechnology and its applications to medicine”, Surg. Neurol., (2004) 61(3) 216-20. https://doi.org/10.1016/j.surneu.2003.09.036
  2. Li, D., Liu, Y., Wu, N., “Application progress of nanotechnology in regenerative medicine of diabetes mellitus”, Diabetes Res. Clin. Pract., (2022) 109966. https://doi.org/10.1016/j.diabres.2022.109966
  3. Majid, A., Faraj, H. R., “Green Synthesis of Copper Nanoparticles‎ using Aqueous Extract of Yerba Mate (llex‎ Paraguarients St. Hill) and its Anticancer‎ Activity” ,Int. J. Nanosci. Nanotechnol., (2022) 18(2) 99-108.
  4. Isa, N., Mohamad Nor, N., Wan Kamis, W. Z., Tan, W. K., Kawamura, G., Matsuda, A., “Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye”, J. Appl. Electrochem., (2022) 52(1) 173-88. https://doi.org/10.1007/s10800-021-01644-z
  5. Rizvi, S. S. H., Moraru, C. I., Bouwmeester, H., Kampers, F. W. H., Cheng, Y., “Nanotechnology and food safety” In: Ensuring global food safety, (2022) 325-40.
  6. Gatoo, M. A., Naseem, S., Arfat, M. Y., Mahmood Dar, A., Qasim, K., Zubair, S., “Physicochemical properties of nanomaterials: implication in associated toxic manifestations.”, Biomed Res. Int., (2014) 14. https://doi.org/10.1155/2014/498420
  7. Isa, N., Wan Kamis, W. Z., Inderan, V., Husin, N. I., Ahmad, F. N., Bashirom, N. H., “Shape, size and dispersion of plant-driven silver nanoparticles for removal of methylene blue dyes”, J. Phys. Conf. Ser., (2019) 13-49. https://doi.org/10.1088/1742-6596/1349/1/012115
  8. Isa, N., Sarijo, S. H., Aziz, A., Lockman, Z. “Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal”, AIP Conf. Proc., (2017) 1877. https://doi.org/10.1063/1.4999887
  9. Mohamad, N. N., Basir, M. R., Mahmood, A., Bakhari, N. A., Mydin, M. M., Arshad, N. M., “Synthesis of Silver Nanoparticles Using Beijing Grass Extract as Reducing Agent and The Comparative Study of AgNPs Toxicity”, Int. J. Electroact. Mater., (2022) (10) 1-11.
  10. Isa, N., Bakhari, N. A., Sarijo, S. H., Aziz, A., Lockman, Z., “Kyllinga brevifolia mediated greener silver nanoparticles”, AIP Conference Proceedings, (2017) 20012. https://doi.org/10.1063/1.5010449
  11. Tiri, R.N.E., Gulbagca, F., Aygun, A., Cherif, A., Sen, F. “Biosynthesis of Ag-Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis”, Environ. Res., 206 (2022) 112622. https://doi.org/10.1016/j.envres.2021.112622
  12. Scala, A., Neri, G., Micale, N., Cordaro, M., Piperno, A. “State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles”, Molecules, 27(3) (2022) 11-34.
  13. Wei, R., Tang, N., Jiang, L., Yang, J., Guo, J., Yuan, X., “Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives”, Coord. Chem. Rev., 462 (2022) 214500. https://doi.org/10.1016/j.ccr.2022.214500
  14. Isa, N., Kian, T. W., Kawamura, G., Matsuda, A., Lockman, Z. “Synthesis of TiO2 Nanotubes Decorated with Ag Nanoparticles (TNTs/AgNPs) For Visible Light Degradation of Methylene Blue”, Journal of Physics: Conference Series, (2018) 12105. https://doi.org/10.1088/1742-6596/1082/1/012105
  15. Alalwan, H. A., Alminshid, A. H., Mohammed, M. M., Hussein, S. A. M., Mohammed, M. F. “Employing Synthesized MgO-SiO2 Nanoparticles as Catalysts in Ethanol Conversion to 1,3-Butadiene”, Int. J. Nanosci. Nanotechnol., 18(3) (2022) 157-166.
  16. Basnet, S., Shah, S., Joshi, R., Pandit, R. “Investigation of Compressive Strength of‎ Cement/Silica Nanocomposite Using‎ Synthesized Silica Nanoparticles from‎ Sugarcane Bagasse Ash‎.”, Int. J. Nanosci. Nanotechnol., 18(2) (2022) 93-98.
  17. Chandra Sekhar, D., Diwakar, B. S., Madhavi, N., “Silica Coated Magnetic Nanoparticles for‎ Biological Applications”, Int. J. Nanosci. Nanotechnol., 16(4) (2020) 209-217.
  18. Lin, C., Liu, H., Guo, M., Zhao, Y., Su, X., Zhang, P., “Plasmon-induced broad spectrum photocatalytic overall water splitting: Through non-noble bimetal nanoparticles hybrid with reduced graphene oxide”, Colloids Surfaces A Physicochem. Eng. Asp., 646 (2022) 128962. https://doi.org/10.1016/ j.colsurfa.2022.128962
  19. Cuba-Supanta, G., Guerrero-Sanchez, J., Rojas-Tapia, J., Landauro, C. V, Rojas-Ayala, C., Takeuchi, N., “An atomistic study on the structural and thermodynamic properties of Al-Fe bimetallic nanoparticles during melting and solidification: The role of size and composition”, Mater. Chem. Phys., 282 (2022) 125936. https://doi.org/10.1016/j.matchemphys.2022.125936
  20. Zhong, X., Yuan, P., Wei, Y., Liu, D., Losic, D., Li, M. “Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2, 5-Furandicarboxylic Acid”, ACS Appl. Mater. & Interfaces, 14(3) (2022) 3949-3960. https://doi.org/10.1021/acsami.1c18788
  21. Pankaj, P., Bhattacharyya, S., Chatterjee, S. “Competition of core-shell and Janus morphology in bimetallic nanoparticles: Insights from a phase-field model”, Acta Mater., 233 (2022) 117933. https://doi.org/10.1016/j.actamat.2022.117933
  22. Kuo, C. shun, Kuo, D. T. F., Chang, A., Wang, K., Chou, P. H., Shih, Y. hsin. “Rapid debromination of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles in water, its mechanisms, and genotoxicity after treatments”, J. Hazard. Mater., 432 (2022) 128630. https://doi.org/10.1016/j.jhazmat.2022.128630
  23. Kang, H., Buchman, J. T., Rodriguez, R. S., Ring, H. L., He, J., Bantz, K. C., “Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities”, Chem. Rev., 119(1) (2018) 664-699.
  24. Modekwe, H. U., Mamo, M., Moothi, K., Daramola, M. O. “Synthesis of bimetallic NiMo/MgO catalyst for catalytic conversion of waste plastics (polypropylene) to carbon nanotubes (CNTs) via chemical vapour deposition method”, Mater. Today Proc., 38 (2021) 549-552. https://doi.org/10.1016/j.matpr.2020.02.398
  25. Yang, Y., Saoud, K. M., Abdelsayed, V., Glaspell, G., Deevi, S., El-Shall, M. S., “Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticle catalysts for CO oxidation”, Catal. Commun., 7(5) (2006) 281-294. https://doi.org/10.1016/j.catcom.2005.11.014
  26. Isa, N., Lockman, Z. “Methylene blue dye removal on silver nanoparticles reduced by Kyllinga brevifolia”, Environ. Sci. Pollut. Res. (2019);26(11):11482 - 11495. https://doi.org/10.1007/s11356-019-04583-7
  27. Isa, N., Osman, M.S., Abdul Hamid, H., Inderan, V., Lockman, Z. “Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity”, Int. J. Phytoremediation., (2022) https://doi.org/10.1007/s11356-019-04583-7
  28. Finn, R. C., Zubieta, J. “A New Class of Organic- Inorganic Hybrid Materials: Hydrothermal Synthesis and Structural Characterization of Bimetallic Organophosphonate Oxide Phases of the Mo/Cu/O/RPO32-Family”, Inorg. Chem., 40(11) (2001) 2466 - 1277. https://doi.org/10.1021/ic0100018
  29. Mirzajani, R., Karimi, S. “Ultrasonic assisted synthesis of magnetic Ni-Ag bimetallic nanoparticles supported on reduced graphene oxide for sonochemical simultaneous removal of sunset yellow and tartrazine dyes by response surface optimization: Application of derivative spectrophot”, Ultrason. Sonochem., 50 (2019) 239-250. https://doi.org/10.1016/j.ultsonch.2018.09.022
  30. Duhan, S., Kishore, N., Aghamkar, P., Devi, S., “Preparation and characterization of sol--gel derived silver-silica nanocomposite”, J. Alloys Compd., 507(1) (2010) 101-114. https://doi.org/10.1016/j.jallcom. 2010.07.107
  31. Khan, A., Shamsi, M. H., Choi, T. S. “Correlating dynamical mechanical properties with temperature and clay composition of polymer-clay nanocomposites”, Comput. Mater. Sci., 45(2) (2009) 257-265. https://doi.org/10.1016/j.commatsci.2008.09.027
  32. Chen, J., Yu, Y., Chen, J., Li, H., Ji, J., Liu, D., “Chemical modification of palygorskite with maleic anhydride modified polypropylene: mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites”, Appl. Clay Sci., 115 (2015) 230-237. https://doi.org/10.1016/j.clay.2015.07.012
  33. Abou-El-Sherbini, K. S., Amer, M. H. A., Abdel-Aziz, M. S., Hamzawy, E. M. A., Sharmoukh, W., Elnagar, M. M., “Encapsulation of Biosynthesized Nanosilver in Silica Composites for Sustainable Antimicrobial Functionality”, Glob. Challenges, 2(10) (2018) 1800048. https://doi.org/10.1002/gch2.201800048
  34. Kobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., “Silica coating of silver nanoparticles using a modified Stöber method” 283 (2005) 392 - 396. https://doi.org/10.1016/j.jcis.2004.08.184
  35. Inglezakis, A., Korobeinyk, V. J., “Silver Nanoparticles Synthesised within the Silica Matrix in Hyperstoichiometrical of Mercury from Aqueous Solutions Silver Nanoparticles Synthesised within the Silica Matrix in Hyperstoichiometrical of Mercury from Aqueous Solutions”, (2018) https://doi.org/10.1088/1755-1315/182/1/012013
  36. Sembiring, S., Riyanto, A., Firdaus, I., Situmeang, R. “Structure and properties of silver-silica composite”, 66(2) (2022) 167-177.
  37. Joardar, S., Adams, M. L., Biswas, R., Deodhar, G. V, Metzger, K. E., Deweese, K., “Direct synthesis of silver nanoparticles modified spherical mesoporous silica as efficient antibacterial materials”, Microporous Mesoporous Mater., 313 (2021) 110824. https://doi.org/10.1016/j.micromeso.2020.110824
  38. Das, T. K., Ganguly, S., Bhawal, P., Remanan, S., Ghosh, S., Das, N. C. “A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity”, J. Environ. Chem. Eng., 6(6) (2018) 6989-7001. https://doi.org/10.1016/ j.jece.2018.10.067
  39. Wang, J. X., Wen, L. X., Wang, Z. H., Chen, J. F., “Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects”, Mater. Chem. Phys., 96(1) (2006) 90-97. https://doi.org/10.1016/j.matchemphys.2005.06.045
  40. Jasiorski, M., Łuszczyk, K., Baszczuk, A. “Morphology and absorption properties control of silver nanoparticles deposited on two types of sol--gel spherical silica substrates”, J. Alloys Compd., 588 (2014) 70-74. https://doi.org/10.1016/j.jallcom.2013.10.244
  41. Ahmad, T., Wani, I. A., Ahmed, J., Al-Hartomy, O. A. “Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions”, Appl. Nanosci., 4(4) (2014) 491-498. https://doi.org/10.1007/s13204-013-0224-y
  42. Sibiya, P. N., Moloto, M. J. “Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles”, Chalcogenide Lett., 11 (2014) 112-123.
  43. Watanabe, T., Tochikubo, F., Hautanen, J., Kauppinen, E. I., “Review of particle agglomeration”, J. Aerosol Sci., 26 (1995) 2-6. https://doi.org/10.1016/0021-8502(95)96917-V
  44. Ashraf, M. A., Peng, W., Zare, Y., Rhee, K. Y. “Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites”, Nanoscale Res. Lett., 13(1) (2018) 1-7. https://doi.org/10.1186/s11671-018-2624-0
  45. Fernando, I., Zhou, Y. “Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles”, Chemosphere., 216 (2019) 297-305. https://doi.org/10.1016/j.chemosphere.2018.10.122
  46. Oves, M., Rauf, M.A., Aslam, M., Qari, H. A., Sonbol, H., Ahmad, I., “Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities”, Saudi J. Biol. Sci., 29(1) (2022) 460-471. https://doi.org/10.1016/j.sjbs.2021.09.007
  47. Prasad, R. “Synthesis of Silver Nanoparticles in Photosynthetic Plants”, (2014).
  48. Mohamad, N. N., Mahmood, A., Bakhari, N. A., Mydin, M. M., Arshad, N. M., Isa, N., “Studies on Surface Plasmon Resonance of Murdannia loriformis Silver Nanoparticles”, Journal of Physics: Conference Series. (2021) 120-124. https://doi.org/10.1088/1742-6596/2129/1/012084
  49. Payami, R., Ghorbanpour, M., Parchehbaf Jadid, A. “Antibacterial silver-doped bioactive silica gel production using molten salt method”, J. Nanostructure Chem., 6(3) (2016) 215-221. https://doi.org/10.1007/s40097-016-0193-2
  50. Devi, P., Deepak, S. “Synthesis , characterization and bactericidal activity of silica / silver core-shell nanoparticles”, (2014). https://doi.org/10.1007/s10856-014-5165-9
  51. Hagura, N., Widiyastuti, W., Iskandar, F., Okuyama, K. “Characterization of silica-coated silver nanoparticles prepared by a reverse micelle and hydrolysis - condensation process”, Chem. Eng. J., 156(1) (2010) 200-205. https://doi.org/10.1016/j.cej.2009.10.024
  52. Lee, J. M., Kim, D. W., Kim, T. H., Oh, S. G., “Facile route for preparation of silica-silver heterogeneous nanocomposite particles using alcohol reduction method”, Mater. Lett., 61(7) (2007) 1558-1562. https://doi.org/10.1016/j.matlet.2006.07.078
  53. Kumar, B., Smita, K., Cumbal, L., Debut, A., “Ionic liquid based silica tuned silver nanoparticles : Novel approach for fabrication”, (2015) 31-74. https://doi.org/10.1080/15533174.2015.1004451
  54. Purdy, S. C., Muscat, A. J. “Coating nonfunctionalized silica spheres with a high density of discrete silver nanoparticles”, J. Nanoparticle Res., 18(3) (2016) 1-10. https://doi.org/10.1007/s11051-016-3371-8
  55. Li, W., Seal, S., Megan, E., Ramsdell, J., Scammon, K., Lelong, G., “Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature”, (2012). https://doi.org/10.1063/1.1571215
  56. Mohamed, A. L., El-naggar, M. E., Shaheen, T. I., Hassabo, A. G. “Novel nano polymeric system containing biosynthesized core shell silver / silica nanoparticles for functionalization of cellulosic based material”, Microsyst. Technol. (2015). https://doi.org/10.1007/s00542-015-2776-0
  57. Patel, A.C., Li, S., Wang, C., Zhang, W., Wei, Y. “Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications”, Chem. Mater., 19(6) (2007) 1231-1238. https://doi.org/10.1021/cm061331z
  58. Pandey, S., Ramontja, J. “Sodium alginate stabilized silver nanoparticles - silica nanohybrid and their antibacterial characteristics”, Int. J. Biol. Macromol., 93 (2016) 712-723. https://doi.org/10.1016/ j.ijbiomac.2016.09.033
  59. Cao, G., Wang, Y. “Fundamentals of homogeneous nucleation”, Nanostructures Nanomater. Synth. Prop. Appl., 3 (2004) 68-79.
  60. Abdal-hay, A., Hamdy, A. S., Abdel-Jaber, G. T., Barakat, N. A. M., Ebnalwaled, A. A., Khalil, K. A., “A facile manufacturing of Ag/SiO2 nanofibers and nanoparticles composites via a simple hydrothermal plasma method”, Ceram. Int., 41(9) (2015) 12447-12452. https://doi.org/10.1016/j.ceramint.2015.06.082
  61. Kunchakara, S., Ratan, A., Dutt, M., Shah, J., Kotnala, R. K., Singh, V. “Impedimetric humidity sensing studies of Ag doped MCM-41 mesoporous silica coated on silver sputtered interdigitated electrodes”, J. Phys. Chem. Solids., 145 (2020) 109531. https://doi.org/10.1016/j.jpcs.2020.109531
  62. Saad, A., Cabet, E., Lilienbaum, A., Hamadi, S., Abderrabba, M., Chehimi, M. M. “Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity”, J. Taiwan Inst. Chem. Eng., 80 (2017) 1022-1030. https://doi.org/10.1016/j.jtice.2017.09.024
  63. Jia, C. J., Schüth, F. “Colloidal metal nanoparticles as a component of designed catalyst”, Phys. Chem. Chem. Phys., 13(7) (2011) 2457-2487.
  64. Azhar, A. S., Kamis, W. Z. W., Hamid, H. A., Kassim, N. F.A., Isa, N., “Removal of Tartrazine Dye Using Kyllinga Brevifolia Extract And Silver Nanoparticles As Catalysts.”, Journal of Physics: Conference Series., (2021) 120-133. https://doi.org/10.1088/1742-6596/2129/1/012033
  65. Haruta, M. “Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation”, ChemInform., 35 (2004) 35-48.
  66. Laurence, B., Chassagneux, F., Parola, S., Francois, B., Battie, Y., Destouches, N., “Silver nanoparticles in a mesostructured silica film” (2008).
  67. Katta, V. K. M., Dubey, R. S., “Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties”, Mater. Today Proc. 45 (2021) 794-809. https://doi.org/10.1016/j.matpr.2020.02.809.