Influence of Cathodic Arc Current on ‎Structure, Mechanical and Tribological ‎Properties of TiC/a-C:H Nano-multilayer ‎Coatings

Document Type : Research Paper


1 ‎School of Physics Science & Technology, Lingnan Normal University, Zhanjiang 524048, ‎China.‎

2 School of Power & Mechanical Engineering, Wuhan University, 430072 Wuhan, China.‎

3 Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 700135 ‎Tashkent, Uzbekistan.‎

4 Ryazan State Radio Engineering University, Gagarin Str. 59/1, Ryazan, 390005, Russian ‎Federation.‎


   A cathodic arc ion plating system was used to produce TiC/a-C:H nano-multilayer coatings on silicon and cemented carbide substrates at cathodic arc currents in the range of 30-70 A. The microstructure, surface morphology and compositions of the TiC/a-C:H nano-multilayer coatings were analyzed by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The influence of the arc current on mechanical and tribological properties of the TiC/a-C:H nano-multilayer coatings was systemically investigated. The measurements show that the TiC/a-C:H multilayer coatings are composed of alternating layers of nanocrystalline TiC and amorphous hydrogenated carbon. The surface morphology of the TiC/a-C:H nano-multilayer coatings is controllable by the arc current. The ratio of Raman peak intensities ID/IG decreases and the full width at half maximum of G peaks (FWHMG) increases with the increasing of arc current. The content of hydrogen decreases from 26.5 at.% to 13.7 at.% while the content of TiC increases from 0.15at. % to 2.35 at.% as the arc current increases from 30 A to 70 A. The hardness of the TiC/a-C:H nano-multilayer coatings increases continuously up to 29.5 GPa at 70 A arc current. The average friction coefficients of the coatings keep at relatively lower values in the range of 0.1-0.2 as measured against Si3N4 balls. The results show significant influences of the cathodic arc current on the microstructure and properties of the TiC/a-C:H nano-multilayer coatings.


  1. Ye, Y. W., Wang, Y. X., Ma, X. L., Zhang, D. Z., Wang, L. P., Li, X. G., “Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater”, Diamond & Related Materials, 79 (2017) 70-78.
  2. Eurídice, W. A., Leite, N. B., Gelamo, R. V., Buranello, P. A., Silva, M. V., Oliveira, C. J., Lopez, R. F., Lemos, C. N., Siervo, A., Moreto, J. A., “a-C:H films produced by PECVD technique onto substrate of Ti6Al4V alloy: Chemical and biological responses”, Applied Surface Science, 503 (2020) 144084.
  3. Ye, Y. W., Wang, C. H., Wang, Y. X., Liu, W., Liu, Z. Y., Li, X. G., “The influence of different metallic counterparts on the tribological performance of nc-CrC/GLC in seawater”, Surface & Coatings Technology, 325 (2017) 689-696.
  4. Tillmann, W., Ulitzka, H. N., Lopes Dias, F., Stangier, D., Thomann, C. A., Moldenhauer, H., Debus, J., “Effects of acetylene flow rate and bias voltage on the structural and tribomechanical properties of sputtered a-C:H films”, Thin Solid Films, 693 (2020) 137691.
  5. Wang, C. T., Ye, Y. W., Guan, X. Y., Hu, J. M., Wang, Y. X., Li, J. L., “An analysis of tribological performance on Cr/GLC film coupling with Si3N4, SiC, WC, Al2O3 and ZrO2 in seawater”, Tribology International, 96 (2016) 77-86.
  6. Choi, J., Hatta, T., “Structural changes of hydrogenated amorphous carbon films deposited on steel rods”, Applied Surface Science, 357 (2015) 814-818.
  7. Hirata, Y., Onishi, K. Choi, J., “Effect of Ar+ ion assist on the properties of a-C:H films deposited on a trench”, Thin Solid Films, 631 (2017) 57–63.
  8. Ishikawa, T., Choi, J., “The effect of microstructure on the tribological properties of a-C:H films”, Diamond & Related Materials, 89 (2018) 94-100.
  9. Thukkaram, M., Vaidulych, M., Kylian, O., Hanus, J., Rigole, P., Aliakbarshirazi, S., Asadian, M., Nikiforov, A., Tongel, A. V., Biederman, H. Coenye, T., Laing, G. D., Morent, R., Wilde, L. D., Verbeken, K., Geyter, N. D. “Investigation of Ag/a-C:H nanocomposite coatings on titanium for orthopedic applications”, ACS Applied Materials & Interfaces, 12 (2020) 23655-23666.
  10. Marchon, B., Vo, P. N., Khan, M. R., “Structure and mechanical properties of hydrogenated carbon films prepared by magnetron sputtering”, IEEE transactions on magnetics, 27 (1991) 5160-5162.
  11. Wang, Y. X., Ye, Y. P., Li, H. X., Ji, L., Chen, J. M., Zhou, H. D., “A magnetron sputtering technique to prepare a-C:H films: Effect of substrate bias”, Applied Surface Science, 257 (2011) 1990-1995.
  12. Wang, Y. X., Ye, Y. P., Li, H. X., Zhang, G. A., Wang, S. C., Wood, R. J. K., Xue, Q. J., “Microstructure and tribological properties of the a-C:H films deposited by magnetron sputtering with CH4/Ar mixture”, Surface & Coatings Technology, 205 (2011) 4577–4581.
  13. Gou, W., Li, G. Q., Chu, X. P., Zhong, B., “Effect of negative self-bias voltage on microstructure and properties of DLC films deposited by RF glow discharge”, Surface & Coatings Technology, 201 (2007) 5043–5045.
  14. Wang, J., Cao, Z. Y., Pan, F. P., Wang, F. G., Liang, A. M., “Tuning of the microstructure, mechanical and tribological properties of a-C:H films by bias voltage of high frequency unipolar pulse”, Applied Surface Science, 356 (2015) 695–700.
  15. Zolkin, A., Semerikova, A., Chepkasov, S. Khomyakov M., “Investigation of the properties of hydrogenated carbon films (a-C:H) deposited on germanium using a linear anode layer ion source”, Materials Today, Proceedings, 4 (2017) 11500-11504.
  16. Wang, P., Wang, X., Xu, T., Liu, W. M., Zhang, J. Y., “Comparing internal stress in diamond-like carbon films with different structure”, Thin Solid Films, 515 (2007) 6899-6903.
  17. Ban, M., Hasegawa, T., Fujii, S., Fujioka, J., “Stress and structural properties of diamond-like carbon films deposited by electron beam excited plasma CVD”, Diamond and Related Materials, 12 (2003) 47-56.
  18. Zhou, Y. F., Li, L. L., Shao, W., Chen, Z. H., Wang, S. F., Xing, X. L., Yang, Q. X., “Mechanical and tribological behaviors of Ti-DLC films deposited on 304 stainless steel: Exploration with Ti doping from micro to macro”, Diamond & Related Materials, 107 (2020) 107870.
  19. Chang, Y. Y., Wang, D. Y., “Structural and electrical properties of Cr doped a-C:H films synthesized by a cathodic-arc activated deposition process”, Surface & Coatings Technology, 200 (2006)3170-3174.
  20. Wang, K., Yang, B. P., Zhang, B., Bai, C. N., Mou, Z. X., Gao, K. X., Yushkov, G., Oks, E., “Modification of a-C:H films via nitrogen and silicon doping: The way to the super lubricity in moisture atmosphere”, Diamond & Related Materials, 107 (2020) 107873.
  21. Nißen, S., Heeg, J., Wienecke, M., Behrend, D., Warkentin, M., Rokosz, K., Gaiaschi, S., Chapon, P., “Surface Characterization and Copper Release of a-C:H:Cu Coatings for Medical Applications”, Coatings, 9 (2020) 119.
  22. Tillmann, W., Dias, N. F. L., Stangier, D., Maus-Friedrichs, W., Gustus, R., Thomann, C. A.,  Moldenhauer, H., Debus, J., “Improved adhesion of a-C and a-C:H films with a CrC interlayer on 16MnCr5 by HiPIMS-pretreatment”, Surface & Coatings Technology, 375 (2019) 877-887.
  23. F. Shahsavari, M. Ehteshamzadeh, M. Hassan Amin, Barlow, A. J., “A comparative study of surface morphology, mechanical and tribological properties of DLC films deposited on Cr and Ni nanolayers”, Ceramics International, 46 (2020) 5077-5085.
  24. Wei, C. H., Yang, J. F., Tai, F. C., “The stress reduction effect by interlayer deposition or film thickness for diamond like carbon on rough surface”, Diamond & Related Materials, 19 (2010) 518-524.
  25. Liu, L. L., An, X. K., Ma, Z. Y., Wu, Z. Z., Tang, W., Lin, H., Fu, R. K. Y., Tian, X. B., Chu, P. K., Pan, F., “Hard and adherent a-C:H gradient coatings by stress engineering”, Journal of Alloys and Compounds, 765 (2018) 921-926.
  26. Jiang, K. M., Zhao, D. Q., Jiang, X., Huang, Q., Miao, L. J., Lu, H. M., Li, Y., “Electronic-structure, corrosion and mechanical properties of nc-CrC/aC:H films deposited by multi-arc ion plating”, Journal of Alloys and Compounds, 750 (2018) 560-569.
  27. Wang, D. Y., Weng, K. W., Chang, C. L., Guo, X. J., “Tribological performance of metal doped diamond-like carbon films deposited by cathodic arc evaporation”, Diamond and Related Materials, 9 (2000) 831-837.
  28. Wang, W., Pelenovich, V. O., Yousaf, M. I., Yan, S. J., Han, B., Wang, Z. S., Tolstogouzov, A. B., Kumar, P., Yang, B., Fu, D. J., “Microstructure, mechanical and tribological properties of WC/a-C:H coatings deposited by cathodic arc ion-plating”, Vacuum, 132 (2016) 31-39.
  29. Wang, L. L., Wang, R.Y., Yan, S. J., Zhang, R., Yang, B., Zhang, Z. D., Huang, Z. H., Fu, D. J., “Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating”, Applied Surface Science, 286 (2013) 109-114.
  30. Mabuchi, Y., Higuchi, T., Weihnacht, V., “Effect of sp2/sp3 bonding ratio and nitrogen content on friction properties of hydrogen-free DLC coatings”, Tribology International, 62 (2013) 130-140.
  31. Wang, Y. F., Gao, K. X., Zhang, B., Wang, Q., Zhang, J. Y., “Structure effects of sp2-rich carbon films under super-low friction contact”, Carbon, 137 (2018) 49-56.
  32. Zhang, X. Q., Ke, P. L., Wang, A. Y., Huang, M. D., Kim, K. H., “Effect of substrate bias on microstructure and tribological performance of GLC films using hybrid HIPIMS technique”, Trans. Nonferrous Met. Soc. China, 22 (2012) s740-s744.
  33. Zhang, J. W., Zhou, S. G., Wang, Y. X., Wang, Y. C., Wang, C. T., Lu, X., Mao, C. L., Chen, S. J., Lu, X. J., Wang, L. P., “Enhancing anti-corrosion and antifouling properties of Cu/GLC composite film for marine application”, Surface & Coatings Technology, 375 (2019) 414-426.
  34. Alawajji, R. A., Kannarpady, G. K., Nima, Z. A., Kelly, N., Watanabe, F., Biris, A. S., “Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition”, Applied Surface Science, 437 (2018) 429-440.
  35. Ferrari, A. C., Robertson, J., “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical review B, 61 (2000) 14095.
  36. Capote, G., Corat, E, J., Trava-Airoldi, V. J., “Deposition of amorphous hydrogenated carbon films on steel surfaces through the enhanced asymmetrical modified bipolar pulsed-DC PECVD method”, Surface & Coatings Technology, 260 (2014) 133-138.
  37. Dong, D., Jiang, B. L., Li, H. T., Du, Y. Z., Yang, C., “Effect of graphite target power density on tribological properties of graphite-like carbon films”, Applied Surface Science, 439 (2018) 900-909.
  38. Khatir, S., Hirose, A., Xiao, C., “Coating diamond-like carbon films on polymer substrates by inductively coupled plasma assisted sputtering”, Surface & Coatings Technology, 253 (2014) 96-99.
  39. Cai, Y., Wang, R.Y., Liu, H. D., Luo, C., Wan, Q., Liu, Y., Chen, H., Chen, Y. M., Mei, Q. S., Yang, B., “Investigation of (Ti:N)-DLC coatings prepared by ion source assisted cathodic arc ion-plating with varying Ti target currents”, Diamond & Related Materials, 69 (2016) 183-190.
  40. Lacerda, R. G., Hammer, P. C., Lepienski, M., Alvarez, F., Marques, F. C., “Hard graphitic-like amorphous carbon films with high stress and local microscopic density”, Journal of Vacuum Science & Technology A, 19 (2001) 971.
  41. Lifshitz, Y., Lempert, G. D., Grossman, E., Avigal, I., Uzan-Saguy, C., Kalish, R., Kulik, J., Marton, D., Rabalais, J. W., “Growth mechanisms of DLC films from C+ ions: experimental studies”, Diamond and Related Materials, 4 (1995) 318-323.
  42. Wang, Z. P., Feng, L. J., Shen, W. Z., “Study on the property of low friction complex graphite-like coating containing tantalum”, Results in Physics, 8 (2018) 41-47.
  43. Jo, Y. J., Zhang, T. F., Son, M. J., Kim, K. H., “Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process”, Applied Surface Science, 433 (2018) 1184-1191.
  44. Wang, Y. X., Wang, L. P., Xue, Q. J., “Influence of Ti target current on microstructure and properties of Ti-doped graphite-like carbon films, Trans. Nonferrous Met. Soc. China, 22 (2012) 13721380.
  45. Zhang, S., Bui, X. L., Fu, Y. Q., “Magnetron-sputtered nc-TiC/a-C(Al) tough nanocomposite coatings”, Thin Solid Films, 467 (2004) 261-266.
  46. Baptista, D. L., Zawislak, F. C., “Hard and sp2-rich amorphous carbon structure formed by ion beam irradiation of fullerene, a-C and polymeric a-C:H films”, Diamond & Related Materials, 13 (2004) 1791-1801.
  47. Choi, J., Ishii, K., Kato, T., Kawaguchi, M., Lee, W., “Structural and mechanical properties of DLC films prepared by bipolar PBII&D”, Diamond & Related Materials, 20 (2011) 845-848.
  48. Casiraghi, C., Ferrari, A. C., Robertson, J., “Raman spectroscopy of hydrogenated amorphous carbons”, Physical Review B, 72 (2005) 085401.
  49. Fujisawa, N., Swain, M. V., James, N. L., Woodard, J. C., Tarrant, R. N., Mckenzie, D. R., “Carbon coating of Ti-6Al-4V for reduced wear in combined impact and sliding applications”, Tribology International, 36 (2003) 873-882.
  50. Erdemir, A., Eryilmaz, O. L., Nilufer, I. B., Fenske, G. R., “EVect of source gas chemistry on tribological performance of diamond-like carbon films”, Diamond and Related Materials, 9 (2000) 632-637.
  51. Erdemir, A., “The role of hydrogen in tribological properties of diamond-like carbon films”, Surface and Coatings Technology, 146-147 (2001) 292-297.
  52. Suzuki, M., Ohana, T., Tanaka, A., “Tribological properties of DLC films with different hydrogen contents in water environment”, Diamond & Related Materials, 13 (2004) 2216-2220.
  53. Marino, M. J., Hsiao, E., Bradley, L. C., Eryilmaz, O. L., Erdemir, A., Kim, S. H., “Is Ultra-Low Friction Needed to Prevent Wear of Diamond-Like Carbon (DLC) An Alcohol Vapor Lubrication Study for Stainless Steel/DLC Interface”, Tribological Letters, 42 (2011) 285-291.
  54. Xiang, D. D., Sui, X. D., Tan, X. P., Hao, J. Y., Wang, Z. W., Liao, Z. H., Liu, W. Q., Tor, S. B., “Improving biotribological properties and corrosion resistance of CoCrMo alloy via a Cr-GLC nanocomposite film in simulated body fluids”, Surface & Coatings Technology, 378 (2019) 124840.