Improving the Dielectric Properties of the ‎Ba(Zr0.1Ti0.9)O3-based Ceramics by Adding ‎a Li2O–SiO2 Sintering Agent Step by Step ‎

Document Type : Research Paper


1 Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced ‎Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, ‎Baoji University of Arts and Sciences, P.O.Box 721013, Baoji, People’s Republic of China.‎

2 Faculty of Chemistry and Materials Science, Northwest University, P.O.Box 710127, Xi’an, ‎People’s Republic of China.‎


   To meet the needs of future multilayer ceramic capacitors(MLCCs), a low sintering temperature, higher capacitance and thinner dielectric layers are necessary. To achieve this goal, an appropriate sintering agent and appropriatedoping technique must be developed to reduce the sintering temperature and optimize the ceramic’smicrostructure. In this study, we researched the effect of Li2O-SiO2 (Li-Si-O) and how it is added on the dielectric properties of the Ba(Zr0.1Ti0.9)O3-based ceramics. The dielectric constant increased significantly by adding Li-Si-O step bystep , but decreased with addition in a one-step . The dielectric constantincreased first and then decreased with the increasing of Li-Si-O content, and reached a maximum of 18942 at 0.10 wt% Li-Si-O, and the temperature-capacitance characteristic (TCC) of the samples with a Li-Si-O content less than 0.20 wt% met the Y5V standards. The Li-Si-O reduced the sintering temperature of the Ba(Zr0.1Ti0.9)O3-basedceramics to 1100 °C, and the dielectric constant first increased and then decreased with increasing sintering temperature increasing.


  1. Kishi, H., Mizuno, Y., Chazono, H., “Base-metal electrode-multilayer ceramic capacitors: past, present and future Perspectives”, Jpn. J. Appl. Phys., 42 (2003) 1-15.
  2. Kim, Y. K., Jung, Y. G., Sung, T. H., Kim, D. H., Paik, U., “Influence of burnout process on pore structure and burnout microstructure in BaTiO3-based Y5V materials”, J. Mater. Process. Tech., 152 (2004) 276-283.
  3. Zhang, X. H., Yue, Z. X., Peng, B., Xie, Z. K., Yuan, L. X., Zhang, J. L., Li, T., “Polarization response and thermally stimulated depolarization current of BaTiO3r3r-based Y5V ceramic multilayer capacitors”, J. Am. Ceram. Soc., 97 (2014) 2921-2927.
  4. Hao, Y. N., Wang, X. H., Zhang, H., Zhang, Y. C., Li, L. T., “A novel approach to the preparation of a highly crystallized BaTiO3 layer on Ni nanoparticles”, J. Am. Ceram., Soc., 96 (2013) 2696-2698.
  5. Jean, J. H., Chang, C. R., “Effect of densification mismatch on camber development during cofiring of nickel-based multilayer ceramic capacitors”, J. Am. Ceram. Soc.,80 (1997) 2401-2406.
  6. Kim, S. H., Koh, J. H., “Li-doped (Ba,Sr)TiO3 thick film interdigital capacitors for microwave applications”, Microelectron. Eng.,86 (2009) 59-62.
  7. Zhou, L. Q., Jiang, Z. H., Zhang, S. R., “Electrical Properties of Sr0.7Ba0.3TiO3 Ceramics Doped with Nb2O5, 3Li2O∙2SiO2, and Bi2O3”, J. Am. Ceram. Soc., 74 (11) (1991) 2925-2927.
  8. Valant, M., Suvorov, D., Pullar, R. C., Sarma, K., Alford, N. M., “A mechanism for low-temperature sintering”, J. Eur. Ceram. Soc., 26 (2006) 2777-2783.
  9. Maurya, D., Ahn, C. W., Zhang, S. J., Priya, S., “High dielectric composition in the system Sn-Modified (1-x)BaTiO3-xBa(Cu1/3Nb2/3)O3, x=0.025 for multilayer ceramic capacitors”, J. Am. Ceram. Soc., 93 (2010) 1225-1228.
  10. Wang, Y. L., Li, L. T., Qi, J. Q., Gui, Z. L., “The effect of Sm2O3-dopant on the microstructure and dielectric properties of BaZrxTi1-xO3 ceramics”, Ferroelectrics., 262 (2001) 233-238.
  11. Wang, Y. L., Li, L. T., Qi, J. Q., Gui, Z. L., “Ferroelectric characteristics of ytterbium-doped barium zirconium titanate ceramics”, Ceram. Int., 28 (2002) 657-661.
  12. Wang, Y., Cui, B., Zhang, L. L., Hu, Z. Y., Wang, Y. Y., “Phase composition, microstructure, and dielectric properties of dysprosium-doped Ba(Zr0.1Ti0.9)O3-based Y5V ceramics with high permittivity”, Ceram. Int., 40 (2014) 11681-11688.
  13. 13.Fan, G. N., Huang, L. X., He, X. G., “Synthesis of singlecrystal BaTiO3 nanoparticles via a one-step sol-precipitation route”, J. Cryst. Growth.,279 (2005) 489-493.
  14. Boulos, M., Guillemet-Fritsch, S., Mathieu, F., Durand, B., Lebey, T., Bley, V., “Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics”, Solid. State. Ionics., 176 (2005) 1301-1309.
  15. Cernea, M., Monnereau, O., Llewellyn, P., Tortet, L., Galassi, C., “Sol-gel synthesis and characterization of Ce doped BaTiO3”, J. Eur. Ceram. Soc., 26 (2006) 3241-3246.
  16. Mohammad-Rezaei, R., Razmi, H., “Preparation and characterization of reduced graphene oxide doped in Sol-Gel derived silica for application in electrochemical double-layer capacitors”, Int. J. Nanosci. Nanotechnol., 12 (2016) 233-241.
  17. Zhan, X. X., Cui, B., Xing, Y. L., Ma, R., Xie, Y., Chang, Z. G., Zhang F. X., “A novel process to synthesize high-k ‘Y5V’ nano-powder and ceramics”, Ceram. Int., 38 (2012) 389-394.
  18. Das, R., Pramanik, P., “Chemical synthesis of fine powder of lead magnesium niobate using niobium tartarate complex”, Mater. Lett., 46 (2000) 7-14.
  19. Yamaga, M., Masui, Y., Kodama, N., “Temperature dependence of persistent phosphorescence in Eu2+-doped Ba3SiO5”, Opt. Mater., 36 (2014) 1776-1780.
  20. Zajc, I., Drofenik, M., “Preparation of BaTiO3 PTCR ceramics by low temperature liquid sintering”, Key. Eng. Mater., 136 (1997) 1329-1332.
  21. Hu, Q., Wang, T., Jin, L., Wei, X. Y., “Dielectric and energy storage properties of barium strontium titanate based glass-ceramics prepared by the sol-gel method”, J. Sol-Gel. Sci. Technol., 71 (2014) 522-529.
  22. Qi, J. Q., Li, L. T., Li, W., “The influence of doping style on the grain growth of BaTiO3 ceramics”, Mater. Sci. Eng. B., 99 (2003) 214-216.
  23. Cui, X. M., He, Y., Liang, Z. Y., Zhang, H., Zhou, J., “Different microstructure BaO-B2O3-SiO2 glass/ceramic composites depending on hightemperature wetting affinity”, Ceram. Int., 36 (2010) 1473-1478.
  24. Liu, C., Zhang, H. W., Su, H., Zhou, T. C., Li, J., Chen, X., Miao, W. Z., Xie, L., Jia, L. J., “Low temperature sintering BBSZ glass modified Li2MgTi3O8 microwave dielectric ceramics”, J. Alloys. Compd., 646 (2015) 1139-1142.
  25. Wang, G., Jiang, J., Dou, Z., Zhang, F., Zhang, T., “Sintering behavior and microwave dielectric properties of 0.67CaTiO3-0.33LaAlO3 ceramics modified by B2O3-Li2O-Al2O3 and CeO2”, Ceram. Int., 42 (2016) 11003-11009.
  26. Ma, R., Cui, B., Wang, Y. J., Wang, S. Y., Wang, Y. Y., “The energy storage properties of fine-grained Ba0.8Sr0.2Zr0.1Ti0.9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings”, Mater. Res. Bull., 111 (2019) 311-319.
  27. Zhai, J. W., Yao, X., Cheng, X. G., Zhang, L. Y., Chen, H., “Dielectric properties under dc-bias field of Ba0.6Sr0.4TiO3 with various grain sizes”, Mater. Sci. Eng. B., 94 (2002) 164-169.