Adsorption Study of Heavy Metals ‎Removal from Wastewater Using PVA- ‎Nano Ferrite Composites

Document Type : Research Paper

Authors

1 Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai- 600025, ‎India.‎

2 Department of Ceramic Technology, A.C.Tech Campus, Anna University, Chennai- 600025, ‎India.‎

3 PG and Research Department of Chemistry, Presidency College (Autonomous), Chennai- ‎‎60000, India.‎

Abstract

   The aim of the present investigation is to synthesize Barium ferrite and Nickel ferrite Nanoparticles by co-precipitation method and these nanoparticles are used to prepare nanocomposites with poly vinyl alcohol (PVA). The composited nanoparticles are characterized by using FTIR, XRD and SEM. The synthesized nanoparticles are used as adsorbent to remove the heavy metals such as Cu2+, Cd2+, Pb2+ from simulated industrial waste water. The experimental parameters such as contact time, adsorbent dosage and pH have been studied on the percentage removal of metal ions. It is observed from the experiment, that 100% and 99.05% of Cu2+ has been removed by PVA-Barium and PVA-Nickel ferrite nanocomposites respectively. The experimental data were analyzed using the Langmuir and Freundlich isotherm. The synthesized nanoparticles have greater potential for adsorption of heavy metal ions present in simulated industrial wastewater. These nanoparticles with polymeric composites can be effectively used as adsorbents in the commercial scale to achieve the desired goal of clean environment.

Keywords


Nagajyoti, P. C., Lee, K. D., Sreekanth T. V. M., (2010). “Heavy metals, occurrence and toxicity for plants: A review”, Environ. Chem. Lett.,  8: 199–216.
Jan,  A. T., Murtaza, I., Ali, A., Haq, Q. M. R., (2009). “Mercury pollution: An emerging problem and potential bacterial remediation strategies”, World J. Microbiol. Biotechnol., 25: 1529–1537.
Clarkson, T. W. (1993). “Mercury:Major issues in environmental health”, Environ. Health Perspect., 100: 31–38.
Jalali, M., Khanlari, Z. V., (2008). “Enviromental contamination of Zn, Cd, Ni, Cu and Pb from industrial areas in Hamadan Province, western Iran”, Environ. Geol., 55: 1537–1543 .
Peng, C., Liu, Y.,  Bi, J., Xu, H., Ahmed, A-S., (2011). “Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis”, Journal of Hazardous materials,189: 814-820.
Morrow, H., (2001). “Environmental and human health impact assessments of battery systems”, Industrial Chemistry Library, 10: 1-34.
Malekirad, A. A., Oryan, S., Fani, A., Babapor, V., Hashemi, M., Baeeri, M., Bayrami Z., Abdollahi, M., (2010). “Study on clinical and biochemical toxicity biomarkers in a zinc-lead mine workers”, Toxicol. Ind. Health, 26: 331–337.
Ji, W.,  Yang, T., Ma, S.,  Ni, W., (2012). “Heavy Metal Pollution of Soils in the Site of a Retired Paint and Ink Factory”,  Energy Procedia, 16:  21-26.
Huang, Y., Zeng, X.,  Guo, L., Lan, J.,  Zhang, L., Cao, D., (2018). “Heavy metal ion removal of wastewater by zeolite-imidazolate frame works”, Separation and Purification Technology, 194:462-469.
Erwin, B., Montgomery, J., (1995) “Heavy metals and the etiology of Parkinson's disease and other movement disorders”,  Toxicology, 97: 3-9.
Michael Caudle, W.,  Guillot,T. S., Lazo, C. R., Miller, G. W., (2012). “Industrial toxicants and Parkinson's disease”, Neuro Toxicology, 33: 178-188.
Tran,T-K., Chiu, K-F., Lin, C-Y., Leu, H-J., (2017). “Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process”, International Journal of Hydrogen Energy, 42: 27741-27748.
Taseidifar, M.,  Makavipour, F, Pashley, R. M., Mokhlesur Rahman, A. F. M., (2017). “Removal of heavy metal ions from water using ion flotation”, Environmental Technology & Innovation,  8182-190.
Othman, Z. A. A., Alam, M. M., Naushad, M., (2013). “Heavy toxic metal ion exchange kinetics: Validation of ion exchange process on composite cation exchanger nylon 6,6 Zr(IV) phosphate”, Journal of Industrial and Engineering Chemistry,19: 956-960.
Vázquez, G., Calvo, M., Sonia Freire, M.,  González-Alvarez,  J., Antorrena, G., (2009). “Chestnutshell as heavy metal adsorbent: optimiza­tion study of lead, copper and zinc cations removal”, J. Hazard. Mater., 172: 1402–1414.
Homaga, P. L., Inoue, K., (2010). “Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse”, Bioresource Technology, 101: 2067-2069.
Shukla,  S. R., Pai,  R. S., Shendarkar  A. D. (2006) “Adsorption of Ni (II), Zn (II) and Fe (II) on modified coir fibre”, Sep. Purif. Technol., 47: 141–147.
Periasamy, K, Namasivayam, C., (1995). “Removal of nickel (II) from aqueous solution wastewaterusing an agricultural waste: peanut hulls”, Waste Manage.,15: 63–68.
Singh, R. S., Singh V. K., Tiwari, P.  N., Singh U. N., Sharma, Y. C., (2009). “An economic removal of Ni (II) from aqueous solutions using an indigenous adsorbent”, Open Environ. Eng. J., 2: 30–36.
Kadirvelu, K., Thamaraiselvi,  K.,  Namasivayam, C., (2001). “Removal of heavy metal from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste”,  Bioresour. Technol., 76: 63-65.
Alqadami, A. A., Naushad, M., Abdalla, M. A., Ahamad, T., ALOthman, Z.A.,  Alshehri, S. M. Ghfar A. A., (2017). “Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: A study of adsorption parameters and interaction mechanism”, Journal of Cleaner Production, 156: 426-436.
Alqadami, A. A., Naushad, M., Alothman, Z. A., Ghfar, A. A., (2017). “Novel Metal−Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment”, ACS Appl. Mater. Interfaces, 9: 36026-36037.
Shahat, A., Awual, M. R.,  Khaleque, M. A.,   Alam, M. Z., Naushad, M., Sarwaruddin Chowdhury, A.M., (2015). “Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media”, Chemical Engineering Journal, 273: 286–295.
Mironyuk, I., Tatarchuk, T.,  Naushad, M., Vasylyeva, H.,  Mykytyn, I.,  (2019). “Highly efficient adsorption of strontium ions by carbonated, mesoporous TiO2, Journal of Molecular Liquids, 285: 742–753.
Kefeni, K. K., Msagati,T. A. M., Mamba, B.B., (2017). “Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device”, Materials Science and Engineering: B, 215: 37-55.
Murugesan, A., Ravikumar, L., SathyaSelvaBala, V., SenthilKumar, P., Vidhyadevi, T., Dinesh Kirupha, S., Kalaivani, S., Krithiga, S., Sivanesan, S., (2011). “Removal of Pb(II), Cu(II) and Cd(II) ions from aqueous solution using polyazomethineamides: Equilibrium and kinetic approach”,  Desalination, 271: 199-208.
Gunasundari, E., Senthil Kumar, P., (2017). “Adsorption isotherm, kinetics and thermodynamic analysis of Cu (II) ions onto the dried algal biomass (Spirulinaplatensis)”, Journal of Industrial and Engineering Chemistry, 56: 129-144.
Naushad, M., ALOthman, Z. A. Awual, M. R. Alam, M. M.,  Eldesoky, G. E., (2015). “Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger”, Ionics, 21:2237–2245.
Ghasemi, M., Naushad, M., Ghasemi, N., Khosravi-fard, Y., (2014). “Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies”, Journal of Industrial and Engineering Chemistry, 20: 2193–2199.
Naushad, M., (2014). “Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium”, Chem. Eng. J., 235: 100–108.
Awual, M. R., Hasan, M. M., Shahat, A., (2014). “Functionalized novel mesoporous adsorbent for selective lead(II) ions monitoring and removal from wastewater”, Sens. Actuators B: Chem., 203: 854–863.
Lalhmunsiama, Lee, S. M.. Tiwari, D., (2013). “Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper(II) and lead(II)”, Chem. Eng. J., 225: 128–137.
Atakli, Z. O. K. Yurum, Y., (2013). “Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water”, Chem. Eng. J., 225: 625–635.