The Electronic and Optical Properties of ‎Pristine, Fluorinated and Chlorinated ‎Pentacene Molecules: An ab-initio Study

Document Type : Research Paper

Authors

Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.‎

Abstract

   In This research the effect of fluorine and chlorine substituents on the electronic and opticalproperties of pentacene molecule have been investigated based on density functional theory as implemented in SIESTA code. The results show thatthe full replacement of hydrogen atoms with fluorine and chlorine in pentacene molecule, leads to shrink the HOMO-LUMO gap by the value of 0.14 and 0.46 eV, respectively. Moreover, the cohesive energy of fluorinated (F-PENT) and chlorinated pentacene (Cl-PENT) follow F-PENT< PENT < Cl-PENT order with respect to the cohesive energy value of -7.54 eV corresponding to pristine pentacene.  Therefore F- PENT shows better stability than others. The results of optical properties demonstrate that fluorinated and chlorinated pentacene have greater dielectric constant and refractive index with respect to pristine pentacene. The reflectivity feature along the long axis of pentacene molecule undergoes a red shift and accordingly the violet color of pentacene changes to blue and green by the influence of fluorination and chlorination, respectively. These results can be utilized to improve molecular electronic and optical devices.

Keywords


  1. Lortscher, E., (2013). “Wiring Molecules into Circuits”, Nat. Nanotechnol., 8: 381-384.
  2. Lindsay, S. M., Ratner, M. A., (2007). “Molecular Transport Junctions: Clearing Mists”, Adv. Mater., 19: 23-31.
  3. Chen F., Tao, N. J., (2009). “Electron transport in single molecules: from benzene to graphene”, Acc. Chem. Res., 42: 573-573.
  4. Xiang, D., Wang, X., Jia, C., Lee, T., Guo, X., (2016). “Molecular-Scale Electronics: From Concept to Function”, Chem. Rev., 116: 4318-4441.
  5. van der Molen, S. J., Naaman, R., Scheer, E., Neaton, J. B., Nitzan, A., Natelson, D. et al., (2013).  “Visions for a molecular future”, Nat. Nanotechnol., 8: 385-389.
  6. Park, S. K., Jackson, T. N., Antony J. E., Mourey, D. A., (2007). “High mobility solution processed 6, 13-bis (triisopropyl-silylethynyl) pentacene organic thin film transistors”, Appl. Phys. Lett., 91:1-3.
  7. Anthony, J., (2008). “The Larger Acenes: Versatile Organic Semiconductors”, Angew. Chem. Int. Ed., 47: 452-483.
  8. Jang, B. B., Lee, S. H., Kafafi, Z. H., (2006). “Asymmetric Pentacene Derivatives for Organic Light-Emitting Diodes”, Chem. Mater, 18: 449-457.
  9. Wolak, M. A., Jang, B. B., Palilis, L. C., Kafafi, Z. H., (2004). “Functionalized Pentacene Derivatives for Use as Red Emitters in Organic Light-Emitting Diodes”, J. Phys. Chem. B, 108: 5492-5499.
  10. Rand, B. P., Genoe, J., Heremans, P., Poortmans, J. S., (2007). “Solar cells utilizing small molecular weight organic semiconductors”, J. Prog. Photovoltaics, 15: 659-676.
  11. Pilevarshahri, R. Rungger, I., Archer, T., Sanvito, S., Shahtahmassebi, N., (2011). “Spin transport in higher n-acene molecules”, Phys. Rev. B, 84: 1-6.
  12. Jurchescu, O. D., Baas, J., Palstra, T. T. M., (2004). “Effect of impurities on the mobility of single crystal pentacene”, Appl. Phys. Lett., 84: 3061-3063.
  13. Chen, H., Chao, I., (2006). “Toward the Rational Design of Functionalized Pentacenes: Reduction of the Impact of Functionalization on the Reorganization Energy”, Chem.Phys. Chem., 7: 2003-2007.
  14. Sakamoto, Y., Suzuki, T., Kobayashi, M., Gao, Y., Fukai, Y., Inoue, Y., Sato, F., Tokito, S., (2004). “Perfluoropentacene: High-Performance p-n junctions and Complementary Circuits with Pentacene”, J. Am. Chem. Soc., 126: 8138-8140.
  15. Gong-He, D. U., Zhao-Yu, R., Guo, P., Zheng, J. M., (2009), “Halopentacenes: Promising Candidates for Organic Semiconductors”, Chin. Phys. Lett., 26: 1-4.
  16. Tang, M. L, Oh, J. H, Reichardt, A. D, Bao, Z., (2009). “Chlorination: a general route toward electron transport in organic semiconductors”, J. Am. Chem. Soc., 131: 3733-3740.
  17. Chien, C.T., Watanabe, M., Chow, T.J., (2015). “The synthesis of 2-halopentacenes and their charge transport properties”, Tetrahedron, 71: 1668-1673.
  18. Kowarik, S., Gerlach, A., Hinderhofer, A., Milita, S., Borgatti, F., Zontone, F., Suzuki, T., Biscarini, F., Schreiber, F., (2008). “Structure, morphology, and growth dynamics of perfluoro‐pentacene thin films”, Phys. Status Solidi-R, 2: 120-122.
  19. Salzmann, I., Duhm, S., Heimel, G., Rabe, J. P., Koch, N., Oehzelt, M., Sakamoto, Y., Suzuki, T., (2008). “Structural order in perfluoropentacene thin films and heterostructures with pentacene”, Langmuir, 24: 7294-7298.
  20. Cao, Y., Liu, S., Shen, Q., Yan, K., et al., (2009). “High-Performance Photoresponsive Organic Nanotransistors with Single-Layer Graphenes as Two-Dimensional”, Electrodes, Adv. Funct. Mater. 19: 2743-2748.
  21. Li, J., et al., (2013). “Spin polarization effects of zigzag-edge graphene electrodes on the rectifying performance of the D-s-A molecular diode”, Org. Electron. 14: 958-965.
  22. Endres, R. G., Fong, C.Y., Yang, L. H., Witte, G., Woll, Ch., (2004). “Structural and electronic properties of pentacene molecule and molecular pentacene”, solid Computational Materials Science, 29: 362-370.
  23. Betowski, L. D., Enlow, M., Riddick, L., Aue, D. H., (2006), “Calculation of Electron Affinities of Polycyclic Aromatic Hydrocarbons and Solvation Energies of Their Radical Anion”, J. Phys. Chem. A, 110: 12927-12946.
  24. Nguyen, T. P., Shim, J. H., Lee, J. Y., (2015). “Density Functional Theory Studies of Hole Mobility in Picene and Pentacene Crystals”, J. Phys. Chem. C, 119: 11301-11310.
  25. Guo, Y., Wang, W., Shao, R., Yin, S., (2015). “Theoretical study on the electron transport properties of chlorinated pentacene derivatives”, Computational and Theoretical Chemistry, 1057: 67-73.
  26. Medina, B. M., Beljonne, D., et al., (2007). “Effect of fluorination on the electronic structure and optical excitations of -conjugated molecules”, J. Chem. Phys., 126: 1-6.
  27. Delgado, M. C. R., Pigg, K. R., Filho, S.,  Gruhn, N. E., et al., (2009),  “Impact of Perfluorination on the Charge-Transport Parameters of Oligoacene Crystals”, J. Am. Chem. Soc., 131: 1502-1512.
  28. Fox, A. M., (2001). “Optical Properties of Solids”, Oxford University Press, New York.
  29. Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., (2002). “The SIESTA method for ab initio order-N materials simulation”, Journal of Physics: Condensed Matter, 14: 2745-2779.
  30. Troullier, N., Martins, J. L., (1990). “A Straightforward Method for Generating Soft Transferable Pseudopotentials”, Solid State Comm., 74: 613-616.
  31. Wooten, F., (1972). “Optical Properties of Solids”, Academic Press, New York.