High Efficiencies in Nanoscale Poly(3-‎Hexylthiophene)/Fullerene Solar Cells

Document Type : Research Paper


1 Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani ‎University, P.O. BOX: 5375171379, Tabriz, Iran.‎

2 School of Engineering, Damghan University, P.O. BOX: 36716–41167, Damghan, Iran.‎


   A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified with either hydrophobic- or hydrophilic-based copolymers. It was originated from ever increasing trend of fill factor (FF) and increasing or marginally decreasing trend of short circuit current density (Jsc). Although PCEs were higher in untreated hydrophobic-compatibilized devices, the hydrophilic-compatibilized systems further benefited from thermal and solvent treatments. The vertical homogeneity increased for compatibilized BHJs during annealing processes, leading to very high FFs around 70%. The maximum values of Jsc and PCE for the well-controlled photovoltaic systems were 12.10 mA/cm2 and 4.85%, respectively.


  1. Campoy-Quiles, M., Ferenczi, T., Agostinelli, T., Etchegoin, P. G., Kim, Y., Anthopoulous, T., Stavrinou, P. N., Bradley, D. D. C., Nelson, J., (2008). “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends”, Nat. Mat., 7: 158-164.
  2. Guo, T. F., Wen, T. C., L¢Vovich Pakhomov, G., Chin, X. G., Liou, S.-H., Yeh, P. H., Yang, C. H., (2008). “Effects of film treatment on the performance of poly (3-hexylthiophene)/soluble fullerene-based organic solar cells”, Thin Solid Films, 516: 3138-3142.
  3. Wu, J. L., Chen, F. C., Hsiao, Y. S., Chien, F. C., Chen, P., Kuo, C. H., Huang, M. H., Hsu, C. S., (2011). “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells”, ACS Nano, 5: 959-967.
  4. Guo, X., Cui, C. H., Zhang, M. J., Huo, L. J., Huang, Y., Hou, J. H., Li, Y. F., (2012). “High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive”, Energy Environ. Sci., 5: 7943-7949.
  5. Washburn, N. R., Lodge, T. P., Bates, F. S., (2000). “Ternary polymer blends as model surfactant systems”, J. Phys. Chem. B, 104: 6987-6997.
  6. Vahidipour, M., Vakili-Nezhaad, G., (2010). “Application of parametric L-systems to generate the figures of two series of spherical fullerenes”, Int. J. Nanosci. Nanotechnol., 6: 71-77.
  7. Shojaosadati, S. A., Ganji, F., Zahedi, B., Rafiee-pour, H. A., Ghourchian, H., (2010). “Effect of different CNT’s oxidation methods on thiocoline detection by surfactant modified graphite electrodes”, Int. J. Nanosci. Nanotechnol., 6: 195-204.
  8. Ghozatloo, A., Yazdani, A., Shariaty-Niassar, M., (2017). “Morphology change and structural‎ evaluation of carbon nanostructures”, Int. J. Nanosci. Nanotechnol., 13: 97-104.
  9. Miyanishi, S., Tajima, K., Hashimoto, K., (2009). “Morphological stabilization of polymer photovoltaic cells by using cross-linkable poly (3-(5-hexenyl) thiophene)”, Macromolecules, 42: 1610-1618.
  10. Ouhib, F., Tomassetti, M., Manca, J., Piersimoni, F., Spoltore, D., Bertho, S., Moons, H., Lazzaroni, R., Desbief, S., Jerome, C., Detrembleur, C.,(2013). “Thermally stable bulk heterojunction solar cells based on cross-linkable acrylate-functionalized polythiophene diblock copolymers”, Macromolecules, 46: 785-795.
  11. Miyanishi, S., Zhang, Y., Tajima, K., Hashimoto, K., (2010). “Fullerene attached all-semiconducting diblock copolymers for stable single-component polymer solar cells”, Chem. Commun., 46: 6723-6725.
  12. Lee, J. U., Cirpan, A., Emrick, T., Russell, T. P., Jo, W. H.,(2009). “Synthesis and photophysical property of well-defined donor–acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene”, J. Mater. Chem., 19: 1483-1489.
  13. Huang, Y. C., Chia, H. C., Chuang, C. M., Tsao, C. S., Chen, C. Y., Su, W. F., (2013). “Facile hot solvent vapor annealing for high performance polymer solar cell using spray process”, Sol. Energy Mater. Sol. Cells, 114: 24-30.
  14. Kim, K. J., Bae, J. J., Seo, Y. S., Kang, B. H., Yeom, S. H., Kwon, D. H., Kang, S. W., (2012). “Enhancement of Active Layer Characteristics with Solvent Spray Annealing Treatment for Organic Solar Cell”, Jpn. J. Appl. Phys., 51: 088003.
  15. Chen, D., Nakahara, A., Wei, D., Nordlund, D., Russell, T. P., (2010). “P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology”, Nano Lett., 11: 561-567.
  16. Wu, W. R., Jeng, U. S., Su, C. J., Wei, K. H., Su, M. S., Chiu, M. Y., Chen, C. Y., Su, W. B., Su, C. H., Su, A. C.,(2011). “Competition between fullerene aggregation and poly (3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells”, ACS Nano, 5: 6233-6243.
  17. Lin, X., Seok, J., Yoon, S., Kim, T., Kim, B. S., Kim, K., (2014). “Morphological investigation of P3HT/PCBM heterojunction and its effects on the performance of bilayer organic solar cells”, Synth. Met., 196: 145-150.
  18. Han, B., Gopalan, S. A., Lee, K. D., Kang, B. H.; Lee, S. W., Lee, J. S., Kwon, D. H., Lee, S. H., Kang, S. W., (2014). “Preheated solvent exposure on P3HT: PCBM thin film: A facile strategy to enhance performance in bulk heterojunction photovoltaic cells”, Curr. Appl. Phys., 14: 1443-1450.
  19. Veerender, P., Saxena, V., Chauhan, A. K., Koiry, S. P., Jha, P., Gusain, A., Choudhury, S., Aswal, D. K., Gupta, S. K., (2014). “Probing the annealing induced molecular ordering in bulk heterojunction polymer solar cells using in-situ Raman spectroscopy”, Sol. Energy Mater. Sol. Cells, 120: 526-535.
  20. Shen, H., Zhang, W., Mackay, M. E., (2014). “Dual length morphological model for bulk‐heterojunction, polymer‐based solar cells”, J. Polym. Sci., Polym. Phys., 52: 387-396.
  21. Wang, H., Zheng, Y., Zhang, L., Yu, J., (2014). “Effect of two-step annealing on the performance of ternary polymer solar cells based on P3HT: PC 71 BM: SQ”, Sol. Energy Mater. Sol. Cells, 128: 215-220.
  22. Aloui, W., Adhikari, T., Nunzi, J. M., Bouazizi, A., (2016). “Effect of thermal annealing on the structural, optical and dielectrical properties of P3HT:PC70BM nanocomposites”, Mater. Res. Bull., 78: 141-147.
  23. Jung, B., Kim, K., Eom, Y., Kim, W., (2015). “High-pressure solvent vapor annealing with a benign solvent to rapidly enhance the performance of organic photovoltaics”, ACS Appl. Mater. Interfaces, 7: 13342-13349.
  24. Aziz, F., Ismail, A. F., Aziz, M., Soga, T., (2014). “Effect of solvent annealing on the crystallinity of spray coated ternary blend films prepared using low boiling point solvents”, Chem. Eng. Process., 79: 48-55.
  25. Liao, H. C., Tsao, C. S., Huang, Y. C., Jao, M. H., Tien, K. Y., Chuang, C. M., Chen, C. Y., Su, C. J., Jeng, U. S., Chend, Y. F., Su, W. F., (2014). “Insights into solvent vapor annealing on the performance of bulk heterojunction solar cells by a quantitative nanomorphology study”, RSC Adv., 4: 6246-6253.
  26. Fu, C. M., Jeng, K. S., Li, Y. H., Hsu, Y. C., Chi, M. H., Jian, W. B., Chen, J. T.,(2015). “Effects of thermal annealing and solvent annealing on the morphologies and properties of poly(3‐hexylthiophene) nanowires”, Macromol. Chem. Phys., 216: 59-68.
  27. Gupta, S. K., Jindal, R., Garg, A., (2015). “Microscopic investigations into the effect of surface treatment of cathode and electron transport layer on the performance of inverted organic solar cells”, ACS Appl. Mater. Interfaces, 7: 16418-16427.
  28. Huang, W., Gann, E., Cheng, Y. B., McNeill, C. R., (2015). “In-depth understanding of the morphology–performance relationship in polymer solar cells”, ACS Appl. Mater. Interfaces, 7: 14026-14034.
  29. Padinger, F., Rittberger, R. S., Sariciftci, N. S., (2003). “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater., 13: 85-88.
  30. Ko, C. J., Lin, Y. K., Chen, F. C., (2007). “Microwave annealing of polymer photovoltaic devices”, Adv. Mater., 19: 3520-3523.
  31. Xiao, Y., Zhou, S., Su, Y., Wang, H., Ye, L., Tsang, S. W., Xie, F., Xu, J., (2014). “Enhanced efficiency of organic solar cells by mixed orthogonal solvents”, Org. Electron., 15: 2007-2013.
  32. Hernandez, J. L., Reichmanis, E., Reynolds. J. R., (2015). “Probing film solidification dynamics in polymer photovoltaics”, Org. Electron., 25: 57-65.
  33. Mohammadi‐Arbati, E., Agbolaghi, S., (2019). “Efficiency above 6% in poly (3‐hexylthiophene): phenyl‐C‐butyric acid methyl ester photovoltaics via simultaneous addition of poly (3‐hexylthiophene) based grafted graphene nanosheets and hydrophobic block copolymers”, Polym. Int., 68: 1292-1302.
  34. Agbolaghi, S., Aghapour, S., Charoughchi, S., Abbasi, F., Sarvari, R., (2018). “High-performance photovoltaics by double-charge transporters using graphenic nanosheets and triisopropylsilylethynyl/naphthothiadiazole moieties”, J. Ind. Eng. Chem., 68: 293-300.
  35. Dang, M. T., Hirsch, L., Wantz, G., Wuest, J. D., (2013). “Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly (3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester system”, Chem. Rev., 113: 3734-3765.
  36. Salim, T., Wong, L. H., Bräuer, B., Kukreja, R., Foo, Y. L., Bao, Z., Lam, Y. M., (2011). “Solvent additives and their effects on blend morphologies of bulk heterojunctions”, J. Mater. Chem., 21: 242-250.
  37. Zeighami, M., Agbolaghi, S., Hamdast, A., Sarvari, R., (2019). “Graphenic nanosheets sandwiched between crystalline cakes of poly (3-hexylthiophene) via simultaneous grafting/crystallization and their applications in active photovoltaic layers”, J. Mater. Sci.: Mater. Electron., 30: 7018-7030.
  38. Zhang, Y., Li, Z., Wakim, S., Alem, S., Tsang, S. W., Lu, J., Ding, J., Tao, Y., (2011). “Bulk heterojunction solar cells based on a new low-band-gap polymer: morphology and performance”, Org. Electron., 12: 1211-1215.
  39. Agbolaghi, S., Abbaspoor, S., Abbasi, F., (2016). “Detection of polymer brushes developed via single crystal growth”, Int. J. Nanosci. Nanotechnol., 12: 79-90.
  40. Chen, C. M., Jen, T. H., Chen, S. A., (2015). “Effective end group modification of poly (3-hexylthiophene) with functional electron-deficient moieties for performance improvement in polymer solar cell”, ACS Appl. Mater. Interfaces, 7: 20548-20555.
  41. Agbolaghi, S., Charoughchi, S., Aghapour, S., Abbasi, F., Bahadori, A., Sarvari, R., (2018). “Bulk heterojunction photovoltaics with improved efficiencies using stem-leaf, shish-kebab and double-fibrillar nano-hybrids based on modified carbon nanotubes and poly (3-hexylthiophene)”, Sol. Energy, 170: 138-150.
  42. Sakthivel, P., Kranthiraja, K., Saravanan, C., Gunasekar, K., Kim, H. I., Shin, W. S., Jeong, J. E.,
    Woo, H. Y., Jin, S. H., (2014). “Carbazole linked phenylquinoline-based fullerene derivatives as acceptors for bulk heterojunction polymer solar cells: effect of interfacial contacts on device performance”, J. Mater. Chem. A, 2: 6916-6921.
  43. Hamdast, A., Agbolaghi, S., Zeighami, M., Beygi‐Khosrowshahi, Y., Sarvari, R., (2019). “Butterfly nanostructures via regioregularly grafted multi‐walled carbon nanotubes and poly (3‐hexylthiophene) to improve photovoltaic characteristics”, Polym. Int., 68: pp.335-343.
  44. Tzabari, L., Wang, J., Lee, Y. J., Hsu, J. W., Tessler, N., (2014). “Role of charge transfer states in P3ht-fullerene solar cells”, J. Phys. Chem. C, 118: 27681-27689.
  45. Guilbert, A. A. Y., Schmidt, M., Bruno, A., Yao, J., King, S., Tuladhar, S. M., Kirchartz, T., Alonso, M. I., Goñi, A. R., Stingelin, N., Haque, S. A., Campoy-Quiles, M., Nelson, J., (2014). “Spectroscopic evaluation of mixing and crystallinity of fullerenes in bulk heterojunctions”, Adv. Funct. Mater., 24: 6972-6980.
  46. Movla, H., Mohammadalizad Rafi, A., Mohammadalizad Rafi, N., (2015). “A model for studying the performance of P3HT: PCBM organic bulk heterojunction solar cells”, Optik, 126: 1429-1432.
  47. Dang, M. T., Wantz, G., Bejbouji, H., Urien, M., Dautel, O. J., Vignau, L.,
    Hirsch, L., (2011). “Polymeric solar cells based on P3HT: PCBM: Role of the casting solvent”, Sol. Energy Mater. Sol. Cells, 95: 3408-3418.
  48. van Bavel, S. S., Bärenklau, M., de With, G., Hoppe, H., Loos, J., (2010). “P3HT/PCBM bulk heterojunction solar cells: impact of blend composition and 3D morphology on device performance”, Adv. Funct. Mater., 20: 1458-1463.
  49. Radbeh, R., Parbaile, E., Bouclé, J., Di Bin, C., Moliton, A., Coudert, V., Rossignol, F., Ratier, B., (2010). “Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase”, Nanotechnology, 21: 035201.
  50. Vakhshouri, K., Kesava, S. V., Kozub, D. R., Gomez, E. D., (2013). “Characterization of the mesoscopic structure in the photoactive layer of organic solar cells: A focused review”, Mater. Lett., 90: 97-102.
  51. Holmes, N. P., Nicolaidis, N., Feron, K., Barr, M., Burke, K. B., Al-Mudhaffer, M., Sista, P., Kilcoyne, A. L. D., Stefan, M. C., Zhou, X., Dastoor, P. C., Belcher, W. J., (2015). “Probing the origin of photocurrent in nanoparticulate organic photovoltaics”, Sol. Energy Mater. Sol. Cells, 140: 412-421.
  52. Knickerbocker, B. M., Pesheck, C. V., Davis, H. T., Scriven, L. E., (1982). “Patterns of three-liquid-phase behavior illustrated by alcohol-hydrocarbon-water-salt mixtures”, J. Phys. Chem., 86: 393-400.
  53. Washburn, N. R., Lodge, T. P., Bates, F. S., (2000). “Ternary polymer blends as model surfactant systems”, J. Phys. Chem. B, 104: 6987-6997.
  54. Sivula, K., Ball, Z. T., Watanabe, N., Frechet, J. M., (2006). “Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: fullerene solar cells”, J. Adv. Mater., 18: 206-210.
  55. Tsai, J. H., Lai, Y. C., Higashihara, T., Lin, C. J., Ueda, M., Chen, W. C., (2010). “Enhancement of P3HT/PCBM photovoltaic efficiency using the surfactant of triblock copolymer containing poly(3-hexylthiophene) and poly(4-vinyltriphenylamine) segments”, Macromolecules, 43: 6085-6091.
  56. Chen, J., Yu, X., Hong, K., Messman, J. M., Pickel, D. L., Xiao, K., Dadmun, M. D., Mays, J. W., Rondinone, A. J., Sumpter, B. G., Kilbey, S. M., (2012). “Ternary behavior and systematic nanoscale manipulation of domain structures in P3HT/PCBM/P3HT-b-PEO films”, J. Mater. Chem., 22: 13013-13022.
  57. Gu, Z. J., Kanto, T., Tsuchiya, K., Shimomura, T., Ogino, K., (2011). “Annealing effect on performance and morphology of photovoltaic devices based on poly (3‐hexylthiophene)‐b‐poly (ethylene oxide)”, J. Polym. Sci., Part A: Polym. Chem., 49: 2645-2652.
  58. Li, F., Shi, Y., Yuan, K., Chen, Y., (2013). “Fine dispersion and self-assembly of ZnO nanoparticles driven by P3HT-b-PEO diblocks for improvement of hybrid solar cells performance”, New J. Chem., 37: 195-203.
  59. Maeda,  Y.,  Shimoi,  Y.,  Ogino,  K., (2005). “Fabrication of microporous films utilizing amphiphilic block copolymers and their use as templates in poly (aniline) preparation”, Polym.  Bull., 53: 315-321.
  60. Gu, Z., Tan, Y., Tsuchiya, K., Shimomura, T.; Ogino, K., (2011). “Synthesis and characterization of poly (3-hexylthiophene)-b-polystyrene for photovoltaic application”, Polymers, 3: 558-570.
  61. Li, Q., Bao, Y., Wang, H., Du, F.; Li, Q., Jin, B., Bai. R., (2013). “A facile and highly efficient strategy for esterification of poly (meth) acrylic acid with halogenated compounds at room temperature promoted by 1, 1, 3, 3-tetramethylguanidine”, Polymer Chemistry, 4: 2891-2897.
  62. Iovu,  M. C.,  Sheina,  E. E.,  Gil,  R. R.,  McCullough,  R. D., (2005). “Experimental evidence for the quasi-“living” nature of the grignard metathesis method for the synthesis of regioregular poly (3-alkylthiophenes)”, Macromolecule, 38: 8649-8656.
  63. Xu, W. L., Zheng, F., He, J. L., Zhu, M. Q., Hao, X. T., (2015). “Quantifying phase separation and interfacial area in organic photovoltaic bulk heterojunction processed with solvent additives”, Chem. Phys., 457: 7-12.