Facile Magnesium Doped Zinc Oxide ‎Nanoparticle Fabrication and ‎Characterization for Biological Benefits

Document Type : Research Paper

Authors

1 ‎Department of Physics, Amrita Sai Institute of Science & Technology, Paritala - 521180, ‎Andhra Pradesh, India.‎

2 ‎Loyola Institute of Frontier Energy, Department of Advanced Zoology and Biotechnology, ‎Loyola College, Chennai – 600041, Tamil Nadu, India.‎

3 Department of Chemical Engineering, Faculty of Engineering & Science, Curtin University, Miri 98009, Sarawak, Malaysia.

Abstract

   Zinc oxide (ZnO) is the most common and widely utilized nanomaterial for biological applications due to their unique characteristics, such as biocompatibility, biosafety and antimicrobial along with thermal stability and mechanical strength. Magnesium (Cu) is considered as a significant dopant for ZnO due to their almost similar ionic radii and their role in biological activities which enhances the biological properties of ZnO. Thus, pure and magnesium doped nanocrystalline ZnO particles were synthesized through sol-gel approach in the current study. The concentration of the dopant is varied from (0.1% - 0.3%) and the composition, structural and optical characterizations were performed by using X-Ray Diffraction (XRD), Transmission Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, UV-Vis optical absorption and photoluminescence (PL) spectrometer. The structural analysis confirmed that magnesium ions substitute Zn ions without altering their wurtzite structure with a high degree of crystallization. Morphological analysis confirmed that the magnesium doping process strongly influences the morphology of ZnO nanoparticles. PL measurement had been carried out at room temperature in which high intensity broad emission peaks were observed in the visible region around 450 - 700 nm that indicates the superposition of green emission bands. Thus, green photo luminescent magnesium doped ZnO nanoparticles from the current study are proposed to be highly beneficial as biosensors, photocatalysts and light-driven antibacterial agents.

Keywords


1.     Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J., Gole, J.L., (2003). "Enhanced nitrogen doping in TiO2 nanoparticles", Nano Lett., 3: 1049-1051.
2.     Qiu, X., Burda, C., (2007). "Chemically synthesized nitrogen-doped metal oxide nanoparticles", Chem. Phys., 339: 1-10.
3.     Jamali, S., Saievar-Iranizad, E., Farjami Shayesteh, S., (2007). "Synthesis, optical and structural characterization of CdS nanoparticles", Int. J. Nanosci. Nanotechnol., 3: 53-62.
4.     Pipelzadeh, E., Valizadeh Derakhshan, M., Babaluo, A.A., Haghighi, M., Tavakoli, A., (2011). "Formic Acid Decomposition Using Synthesized Ag/TiO2 Nanocomposite in Ethanol-Water Media Under Illumination of Near UV Light", Int. J. Nanosci. Nanotechnol., 7: 78-86.
5.     Taghvaei, V., Habibi-Yangjeh, A., Behboudnia, M., (2011). "Simple and Low Temperature Method for Preparation of Nanocrystalline ZnO in Presence of [EMIM][EtSO4] and Their Photocatalytic Activities", Int. J. Nanosci. Nanotechnol., 7: 94-101.
6.     Wang, Z.L., (2004). "Zinc oxide nanostructures: growth, properties and applications", J. Phys.: Condens. Matter, 16: R829.
7.     Simeonidis, K., Mourdikoudis, S., Kaprara, E., Mitrakas, M., Polavarapu, L., (2016). "Inorganic engineered nanoparticles in drinking water treatment: a critical review", Environ. Sci.: Water Res. Technol., 2: 43-70.
8.     Koizumi, H., Watabe, J., Sugiyama, S., Hirabayashi, H., Tokuno, Y., Wada, H., Homma, T., (2018). "Properties of Ce3+-Doped Y3Al5O12 Phosphor Nanoparticles Formed by Laser Ablation in Liquid", ECS J. Solid State Sci. Technol., 7: R63-R69.
9.     Khayat Sarkar, Z., Khayat Sarkar, F., (2011). "Magnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation", Int. J. Nanosci. Nanotechnol., 7: 197-200.
10.  Wu, Z.-S., Yang, S., Sun, Y., Parvez, K., Feng, X., Müllen, K., (2012). "3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction", J. Am. Chem. Soc., 134: 9082-9085.
11.  Chen, X., Burda, C., (2008). "The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials", J. Am. Chem. Soc., 130: 5018-5019.
12.  Zaleska, A., (2008). "Doped-TiO2: a review", Recent Pat. Eng., 2: 157-164.
13.  Narayan, H., Alemu, H., (2017). "A Comparison of Photocatalytic Activity of ‎TiO2 Nanocomposites Doped with Zn2+/Fe3+ ‎and Y3+ Ions", Int. J. Nanosci. Nanotechnol., 13: 315-325.
14.  Anaraki Firooz, A., (2018). "Mo-Doped SnO2 Nanoparticles: A Case Study for Selective Epoxidation of Cycloocten", Int. J. Nanosci. Nanotechnol., 14: 159-163.
15.  Zhong, L.S., Hu, J.S., Liang, H.P., Cao, A.M., Song, W.G., Wan, L.J., (2006). "Self‐Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment", Adv. Mater., 18: 2426-2431.
16.  Corma, A., Atienzar, P., Garcia, H., Chane-Ching, J.-Y., (2004). "Hierarchically mesostructured doped CeO 2 with potential for solar-cell use", Nat. Mater., 3: 394.
17.  Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., Adibkia, K., (2014). "Antimicrobial activity of the metals and metal oxide nanoparticles", Mater. Sci. Eng.: C, 44: 278-284.
18.  Zare, E., Pourseyedi, S., Khatami, M., Darezereshki, E., (2017). "Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity", J. Mol. Struct., 1146: 96-103.
19.  Cheng, Y., Yang, Q.-D., Xiao, J., Xue, Q., Li, H.-W., Guan, Z., Yip, H.-L., Tsang, S.-W., (2015). "Decomposition of organometal halide perovskite films on zinc oxide nanoparticles", ACS Appl. Mater. Interfaces, 7: 19986-19993.
20.  Zarrinkhameh, M., Zendehnam, A., Hosseini, S.M., (2015). "Fabrication of polyvinylchloride based nanocomposite thin film filled with zinc oxide nanoparticles: morphological, thermal and optical characteristics", J. Ind. Eng. Chem., 30: 295-301.
21.  Choi, J., Kim, H., Kim, P., Jo, E., Kim, H.-M., Lee, M.-Y., Jin, S.M., Park, K., (2015). "Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration", J. Toxicol. Environ. Health, Part A, 78: 226-243.
22.  Baskar, G., Chandhuru, J., Fahad, K.S., Praveen, A.S., Chamundeeswari, M., Muthukumar, T., (2015). "Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles", J. Mater. Sci.: Mater. Med., 26: 43.
23.  Nazarizadeh, A., Asri-Rezaie, S., (2016). "Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats", AAPS PharmSciTech., 17: 834-843.
24.  Elumalai, K., Velmurugan, S., (2015). "Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.)", Appl. Surf. Sci., 345: 329-336.
25.  Nagajyothi, P.C., Cha, S.J., Yang, I.J., Sreekanth, T.V.M., Kim, K.J., Shin, H.M., (2015). "Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract", J. Photochem. Photobiol., B, 146: 10-17.
26.  Rasmussen, J.W., Martinez, E., Louka, P., Wingett, D.G., (2010). "Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications", Expert Opin. Drug Delivery, 7: 1063-1077.
27.  Mukherjee, A., Pokhrel, S., Bandyopadhyay, S., Mädler, L., Peralta-Videa, J.R., Gardea-Torresdey, J.L., (2014). "A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ ZnO) in green peas (Pisum sativum L.)", Chem. Eng. J., 258: 394-401.
28.  Etacheri, V., Roshan, R., Kumar, V., (2012). "Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis", ACS Appl. Mater. Interfaces, 4: 2717-2725.
29.  Xu, C.X., Sun, X.W., Zhang, X.H., Ke, L., Chua, S.J., (2004). "Photoluminescent properties of copper-doped zinc oxide nanowires", Nanotechnology, 15: 856.
30.  Suwanboon, S., Amornpitoksuk, P., Haidoux, A., Tedenac, J.-C., (2008). "Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature", J. Alloys Compd., 462: 335-339.
31.  Manikandan, A., Manikandan, E., Meenatchi, B., Vadivel, S., Jaganathan, S.K., Ladchumananandasivam, R., Henini, M., Maaza, M., Aanand, J.S., (2017). "Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies", J. Alloys Compd., 723: 1155-1161.
32.  Hameed, A.S.H., Louis, G., Karthikeyan, C., Thajuddin, N., Ravi, G., (2019). "Impact of l-Arginine and l-Histidine on the structural, optical and antibacterial properties of Mg doped ZnO nanoparticles tested against extended-spectrum beta-lactamases (ESBLs) producing Escherichia coli", Spectrochim. Acta, Part A, 211: 373-382.
33.  Alam, M.S., Manzoor, U., Mujahid, M., Bhatti, A.S., (2016). "Highly responsive UV light sensors using Mg-doped ZnO nanoparticles", J. Sens., 2016.
34.  Kulandaisamy, A.J., Reddy, J.R., Srinivasan, P., Babu, K.J., Mani, G.K., Shankar, P., Rayappan, J.B.B., (2016). "Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping", J. Alloys Compd., 688: 422-429.
35.  Arshad, M., Meenhaz Ansari, M., Ahmed, A.S., Tripathi, P., Ashraf, S.S.Z., Naqvi, A.H., Azam, A., (2015). "Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route", J. Lumin., 161: 275-280.
36.  Jiang, Z.-Y., Zhu, K.-R., Lin, Z.-Q., Jin, S.-W., Li, G., (2018). "Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol–gel method", Rare Met., 37: 881-885.
37.  Ishizaki, T., Hieda, J., Saito, N., Saito, N., Takai, O., (2010). "Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition", Electrochim. Acta, 55: 7094-7101.
38.  Kondori, B., Mahmudi, R., (2010). "Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy", Mater. Sci. Eng.: A, 527: 2014-2021.
39.  Wang, Y., Wei, M., Gao, J., (2009). "Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating", Mater. Sci. Eng.: C, 29: 1311-1316.
40.  Chen, L.-Y., Xu, J.-Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.-M., Mathaudhu, S., Li, X.-C., (2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles", Nature, 528: 539.
41.  Jeevanandam, J., K Danquah, M., Debnath, S., S Meka, V., S Chan, Y., (2015). "Opportunities for nano-formulations in type 2 diabetes mellitus treatments", Curr. Pharm. Biotechnol., 16: 853-870.
42.  Ghosh, A., Kumari, N., Bhattacharjee, A., (2014). "Investigations on structural and optical properties of Cu doped ZnO", J. Nanosci. Nanotechnol, 2: 485-489.
43.  Jaison, J., Balakumar, S., Chan, Y. Sol–Gel synthesis and characterization of magnesium peroxide nanoparticles. in IOP Conference Series: Materials Science and Engineering. 2015. IOP Publishing.
44.  Sonawane, Y.S., Kanade, K., Kale, B., Aiyer, R., (2008). "Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles", Materials Research Bulletin, 43: 2719-2726.
45.  Kanade, K., Kale, B., Baeg, J.-O., Lee, S.M., Lee, C.W., Moon, S.-J., Chang, H., (2007). "Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation", Materials Chemistry and Physics, 102: 98-104.
46.  Shan, F.K., Kim, B.I., Liu, G.X., Liu, Z.F., Sohn, J.Y., Lee, W.J., Shin, B.C., Yu, Y.S., (2004). "Blueshift of near band edge emission in Mg doped ZnO thin films and aging", J. Appl. Phys., 95: 4772-4776.
47.  Fujihara, S., Ogawa, Y., Kasai, A., (2004). "Tunable visible photoluminescence from ZnO thin films through Mg-doping and annealing", Chem. Mater., 16: 2965-2968.
48.  Zak, A.K., Yousefi, R., Majid, W.H.A., Muhamad, M.R., (2012). "Facile synthesis and X-ray peak broadening studies of Zn1− xMgxO nanoparticles", Ceram. Int., 38: 2059-2064.
49.  Khorsand Zak, A., Yousefi, R., Majid, W.H.A., Muhamad, M.R., (2012). "Facile synthesis and X-ray peak broadening studies of Zn1−xMgxO nanoparticles", Ceram. Int., 38: 2059-2064.
50.  Xiong, G., Pal, U., Serrano, J., Ucer, K., Williams, R., (2006). "Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective", physica status solidi c, 3: 3577-3581.
51.  Pan, H., Luo, J., Sun, H., Feng, Y., Poh, C., Lin, J., (2006). "Hydrogen storage of ZnO and Mg doped ZnO nanowires", Nanotechnology, 17: 2963.
52.  Singh, J., Kumar, P., Hui, K.S., Hui, K.N., Ramam, K., Tiwari, R.S., Srivastava, O.N., (2012). "Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires", CrystEngComm, 14: 5898-5904.
53.  Hameed, A.S.H., Karthikeyan, C., Sasikumar, S., Kumar, V.S., Kumaresan, S., Ravi, G., (2013). "Impact of alkaline metal ions Mg 2+, Ca 2+, Sr 2+ and Ba 2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method", J. Mater. Chem. B, 1: 5950-5962.
54.  Wang, Y.S., Thomas, P.J., O'Brien, P., (2006). "Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions", J. Phys. Chem. B, 110: 21412-21415.
55.  Jayanthi, K., Chawla, S., Sood, K.N., Chhibara, M., Singh, S., (2009). "Dopant induced morphology changes in ZnO nanocrystals", Appl. Surf. Sci., 255: 5869-5875.
56.  Ivetić, T.B., Dimitrievska, M.R., Finčur, N.L., Đačanin, L.R., Gúth, I.O., Abramović, B.F., Lukić-Petrović, S.R., (2014). "Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation", Ceram. Int., 40: 1545-1552.
57.  Wang, M., Yi, J., Yang, S., Cao, Z., Huang, X., Li, Y., Li, H., Zhong, J., (2016). "Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell", Appl. Surf. Sci., 382: 217-224.
58.  Xiong, H.M., Shchukin, D.G., Möhwald, H., Xu, Y., Xia, Y.Y., (2009). "Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II)", Angew. Chem., Int. Ed., 48: 2727-2731.
59.  Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., Yang, P., (2001). "Catalytic growth of zinc oxide nanowires by vapor transport", Adv. Mater., 13: 113-116.
60.  Kim, E.-B., Ameen, S., Akhtar, M.S., Shin, H.S., (2018). "Iron-nickel co-doped ZnO nanoparticles as scaffold for field effect transistor sensor: Application in electrochemical detection of hexahydropyridine chemical", Sens. Actuators, B, 275: 422-431.
61.  Wang, J.-X., Zhuo, Y., Zhou, Y., Wang, H.-J., Yuan, R., Chai, Y.-Q., (2016). "Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-β detection", ACS Appl. Mater. Interfaces, 8: 12968-12975.
62.          Rekha, K., Nirmala, M., Nair, M.G., Anukaliani, A., (2010). "Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles", Phys. B: Condens. Matter, 405: 3180-3185.