Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

Document Type : Research Paper

Authors

Department of Nanochemical Engineering, Faculty of Advanced Technologies, Shiraz ‎University, P.O.Box 7194684560, Shiraz, Iran.‎

Abstract

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is investigated to take into account the effect of feed concentration, membrane charge density and pore size on rejection. The results show that the reduction of feed concentration and membrane pore size lead to increase the rejection of electrolyte in NF separation process. Furthermore, increasing the membrane charge density causes the rejection of co-ions to be increased leading to an enhanced total rejection. LTPM is compared to unmodified linearized model which approves the higher precision of the modified model especially at higher concentrations.

Keywords


1.    Wang X. L., Tsuru T., Nakao S. I., Kimura S., (1995)."Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model'', J. Membr. Sci., 103:117-133.
2. Akbari A., Homayoonfal M., (2009).Fabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo Polymerization”, Int. J. Nanosci. Nanotechnol., 5 (1): 43-52.
3. Ghaee A., Shariaty-Niassar M., Barzin J., Ismail A.F., (2013). “Chitosan/Polyethersulfone Composite Nanofiltration Membrane for Industrial Wastewater Treatment”, Int. J. Nanosci. Nanotechnol., 9 (4):213-220.
4.     Mohammad A. W., Teow Y., Ang W., Chung Y., Oatley-Radcliffe D., Hilal N., (2015).  "Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356: 226-254.
5.     Bowen W. R., Mohammad A. W., Hilal N., (1997). "Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy", J. Membr. Sci., 126: 91-105.
6.     Hagmeyer G., Gimbel R., (1998). "Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values", Desalination, 117: 247-256.
7.     Schaep J., Vandecasteele C., Mohammad A. W., Bowen W.R., (1999). "Analysis of the salt retention of nanofiltration membranes using the Donnan–Steric partitioning pore model", Sep. Sci. Tech., 34: 3009-3030.
8.     Fievet P., Labbez C., Szymczyk A., Vidonne A., Foissy A., Pagetti J., (2002). "Electrolyte transport through amphoteric nanofiltration membranes", Chem. Eng. Sci., 57: 2921-2931.
9.     Mohammad A. W., Takriff M. S., (2003). "Predicting flux and rejection of multicomponent salts mixture in nanofiltration membranes", Desalination, 157: 105-111.
10.  Kumar V. S., Hariharan K. S., Mayya K. S., Han S., (2013). "Volume averaged reduced order Donnan Steric Pore Model for nanofiltration membranes", Desalination, 322: 21-28.
11.  Bandini S., Vezzani D., (2003). "Nanofiltration modeling: the role of dielectric exclusion in membrane characterization", Chem. Eng. Sci., 58: 3303-3326.
12.  Mohammad A. W., Hilal N., Al-Zoubi H., Darwish N., (2007). "Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes", J. Membr. Sci., 289: 40-50.
13.  Geraldes V., Alves A. M. B., (2008). "Computer program for simulation of mass transport in nanofiltration membranes", J. Membr. Sci., 321: 172-182.
14.  Kotrappanavar N. S., Hussain A., Abashar M., Al-Mutaz I. S., Aminabhavi T. M., Nadagouda M. N., (2011). "Prediction of physical properties of nanofiltration membranes for neutral and charged solutes", Desalination, 280: 174-182.
15.  Roy Y., Sharqawy M. H., Lienhard J. H., (2015). "Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration", J. Membr. Sci., 493: 360-372.
16.  Bowen W.R., Welfoot J.S., (2002). "Modelling the performance of membrane nanofiltration-critical assessment and model development", Chem. Eng. Sci., 57: 1121-1137.
17.  Bowen W. R., Welfoot J. S., Williams P. M., (2002). "Linearized transport model for nanofiltration: development and assessment", AIChE J., 48: 760-773.
18.  Zerafat M. M., Shariati-Niassar M., Hashemi S., Sabbaghi S., Ismail A. F., Matsuura T., (2013). "Mathematical modeling of nanofiltration for concentrated electrolyte solutions", Desalination, 320: 17-23.
19. Zerafat M. M. et al., (2016). Membrane Technology for Water & Wastewater Treatment, Energy & Environment, A.F. Ismail & T. Matsuura, Chapter 13: "Mathematical modeling of nanofiltration-based deionization processes in aqueous media", CRC Press.
20.  Bowen W. R., Mukhtar H., (1996). "Characterisation and prediction of separation performance of nanofiltration membranes", J. Membr. Sci., 112: 263-274.
21.  Szymczyk A., Fievet P., (2005). "Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model", J. Membr. Sci.,  252: 77-88.
22.  Szymczyk A., Lanteri Y., Fievet P., (2009). "Modelling the transport of asymmetric electrolytes through nanofiltration membranes", Desalination, 245: 396-407.
23.  Saliha B., Patrick F., Anthony S., (2009). "Investigating nanofiltration of multi-ionic solutions using the steric, electric and dielectric exclusion model", Chem. Eng. Sci., 64: 3789-3798.
24.  Silva V., Geraldes V., Alves A. B., Palacio L., Prádanos P., Hernández A., (2011). "Multi-ionic nanofiltration of highly concentrated salt mixtures in the seawater range", Desalination, 277: 29-39.
25.  Déon S., Dutournié P., Bourseau P., (2007). "Transfer of monovalent salts through nanofiltration membranes: A model combining transport through pores and the polarization layer", Ind. Eng. Chem. Res., 46: 6752-6761.
26.  Déon S., Dutournié P., Bourseau P., (2007). "Modeling nanofiltration with Nernst‐Planck approach and polarization layer", AIChE J., 53: 1952-1969.
27.  Déon S., Dutournié P., Limousy L., Bourseau P., (2011). "The two‐dimensional pore and polarization transport model to describe mixtures separation by nanofiltration: Model validation", AIChE J., 57: 985-995.
28. Déon S., Escoda A., Fievet P., Dutournié P., Bourseau P., (2012). "How to use a multi-ionic transport model to fully predict rejection of mineral salts by nanofiltration membranes", Chem. Eng. J., 189: 24-31.
29.  Hendrix E. M., Boglárka G., (2010). "Introduction to nonlinear and global optimization", Springer.
30.  Weise T., (2009). "Global optimization algorithms-theory and application".
31. Yao X., "Simulated annealing with extended neighbourhood", Int. J. Com. Math., 40: 169-189.
32.          Ferland J. A., Hertz A., Lavoie A., (1996). "An object-oriented methodology for solving assignment-type problems with neighborhood search techniques", Operat. Res., 44: 347-359.