Imprecise Minority-Based Full Adder for ‎Approximate Computing Using CNFETs

Document Type : Research Paper

Authors

1 Department of Computer Engineering, Yadegar -e- Imam Khomeini (RAH) Branch, Islamic ‎Azad University, 1815163111, Tehran, Iran.‎

2 Faculty of Computer Science and Engineering, Shahid Beheshti University, G.C., Evin ‎‎1983963113, Tehran, Iran.‎

Abstract

   Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. Accordingly, Carbon Nanotube Field Effect Transistors have gotten a widespread attention as the most appropriate replacement for MOSFETs. In this paper, an imprecise full adder cell based on CNFET minority gates is introduced. Evaluation and comparison of the minority-based and the-state-of-the-art imprecise full adders in terms of average power dissipation, delay and power delay product (PDP) are done. The error distance (ED), normalized error distance (NED) and PDP-NED product metrics are also considered for assessing the accuracy of the reviewed circuits. The HSPICE simulations, conducted using Stanford 32nm CNFET model, indicate that the minority-based design outperforms the other designs in terms of performance and error tolerance.

Keywords


  1. Han, J., Orshansky, M., (2013). “Approximate computing: An emerging paradigm for energy-efficient design”, 18th IEEE European Test Symposium (ETS), 1-6.
  2. Gupta, V., Mohapatra, D., Raghunathan, A., Roy, K., (2013). “Low-power digital signal processing using approximate adders”, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 32(1): 124-137.
  3. Yang, Z., Jain, A., Liang, J., Han, J., Lombardi, F., (2013). “Approximate xor/xnor-based adders for inexact computing”, In IEEE International Conference on Nanotechnology.
  4.  Safaei Mehrabani, Y., Faghih Mirzaee, R., Zareei, Z., Daryabari, S. M., (2017). “A Novel High-Speed, Low-Power CNTFET-Based Inexact Full Adder Cell for Image Processing Application of Motion Detector”, Journal of Circuits, Systems, and Computers, 26(5):  1750082.
  5.  Moaiyeri, M. H., Sabetzadeh, F., Angizi, S., (2018). “An Efficient Majority-Based Compressor for Approximate Computing In The Nano Era”, Microsystem Technologies, 24(3): 1589-1601.
  6. Shirinabadi Farahani, S., Reshadinezhad, M. R., (2018). “A new Twelve-transistor Approximate 4: 2 Compressor in CNTFET Technology”, International Journal of Electronics, 106(5): 1-16.
  7. Roy, K., Mukhopadhyay, S., Meimand-Mehmoodi, H., (2003). “Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits”, Proceedings of the IEEE, 91(2): 305-327.
  8. Peng, L. M., Zhang, Z., Wang, S., (2014). “Carbon nanotube electronics: recent advances”, Materials Today, 17(9): 433-442.
  9. Lin, S., Kim, Y. -B., Lombardi, F., (2011). ”CNFET-based design of ternary logic gates and arithmetic circuits”, IEEE Transactions on Nanotechnology, 10(2): 217-225.
  10. You, K., Kundan, N., (2011). “Design of a ternary static memory cell using carbon nanotube-based transistors”, Micro & Nano Letters, 6(6): 381-385.
  11. Rezaei Khezeli, M., Moaiyeri, M. H., Jalali, A., (2017). “Analysis of Crosstalk Effects for Multiwalled Carbon Nanotube Bundle Interconnects in Ternary Logic and Comparison with Cu interconnects”, IEEE Transactions on Nanotechnology, 16(1): 107-117.
  12. Moaiyeri, M. H., Mehdizadeh Taheri, Z., Rezaei Khezeli, M., Jalali, A., (2018). “Efficient Passive Shielding of MWCNT Interconnects to Reduce Crosstalk Effects in Multiple-Valued Logic Circuits”, IEEE Transactions on Electromagnetic Compatibility, 1-9.
  13. Moghaddam, M., Moaiyeri, M. H., Eshghi, M., (2017). “Design and Evaluation of an Efficient Schmitt Trigger-based Hardened Latch in CNTFET Technology”, IEEE Transactions on Device and Materials Reliability, 17(1): 267-277.
  14. Marani, R., Perri, A. G., (2018). “Dynamic Simulation of CNTFET-Based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14(4): 277-288.
  15. Daliri, S. S., Javidan, J., Bozorgmehr, A., (2017). “Reducing Hardware Complexity of Wallace Multiplier Using High Order Compressors Based on CNTFET”, International Journal of Nanoscience and Nanotechnology, 13(1): 59-67.
  16. Moaiyeri, M. H., Chavoshisani, R., Jalali, A., Navi, K., Hashemipour, O., (2016). “Efficient radix-r adders for nanoelectronics”, International Journal of Electronics, 103(2): 281-296.
  17. Mahmoud, H. A., Bayoumi, M. A., (1999). “A 10-transistor low-power high-speed full adder cell”, Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1: 43-46.
  18. Lin, J. -F, Hwang, Y. -T., Sheu, M. -H., Ho, C. -C., (2007). “A novel high-speed and energy efficient 10-transistor full adder design”, Circuits and Systems I: Regular Papers, IEEE Transactions on, 54(5): 1050-1059.
  19. Pounaki, N., Moaiyeri, M. H., Navi, K., Bagherzadeh, N., (2015). “An Ultra-efficient Imprecise Adder for Approximate Computing Based on CNTFET”, The CSI Journal of Computer Science and Engineering, 13(1): 31-37.
  20. Navi, K., Moaiyeri, M. H., Mirzaee, R. F., Hashemipour, O., Mazloom Nezhad, B., (2009). “Two new low-power full adders based on majority-not gates”, Microelectronics Journal, 40(1): 126-130.
  21. Deng, J., Wong, H. S., (2007). “A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region”, IEEE Transactions on Electron Devices, 54(12): 3186-3194.
  22. Deng, J., Wong, H. S., (2007). “A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: Full device model and circuit performance benchmarking”, IEEE Transactions on Electron Devices, 54(12): 3195-3205.
  23. Kim, Y. –B, Kim, Y. –B., (2010). “High Speed and Low Power Transceiver Design with CNFET and CNT Bundle Interconnect”, Proc IEEE International SOC Conference, 152-157.
  24. Reshadinezhad, M. R., Moaiyeri, M. H., Navi, K., (2012). “An Energy-Efficient Full Adder Cell Using CNFET Technology”, IEICE Transactions on Electronics, E95.C(4): 744-751.
  25. Cho, G., Kim, Y. B., Lombardi, F., Choi, M., (2009). “Performance evaluation of CNFET-based logic gates”, In Instrumentation and Measurement Technology Conference, 909-912.
  26. Nayeri, M., Keshavarzian, P., Nayeri, M., (2019). “A Novel Design of Quaternary Inverter Gate Based on GNRFET”, International Journal of Nanoscience and Nanotechnology, 15(3): 211-217.
  27. Liang, J., Chen, L., Han, J., Lombardi, F., (2014). “Design and evaluation of multiple valued logic gates using pseudo N-Type carbon nanotube FETs”, IEEE Transactions on Nanotechnology, 13 (4): 695–708.
  28. Lin, S., Kim, Y. B., Lombardi, F., (2012). “Design of a ternary memory cell using CNTFETs”, IEEE Transactions on Nanotechnology, 11(5): 1019-1025.
  29. Liang, J., Han, J., Lombardi, F., (2013). “New Metrics for the Reliability of Approximate and Probabilistic Adders”, in Computers, IEEE Transactions on, 62(9): 1760-1771.
  30. Goel, S., Kumar, A., Bayoumi, M. A., (2006). “Design of Robust, Energy-Efficient Full Adders for Deep-Submicrometer Design Using Hybrid-CMOS Logic Style”, IEEE Transactions on Very Large Scale Integration Systems, 14(12): 1309-1321.