Vanadium Removal from Fuel Oil and ‎Waste Water in Power Plant Using Humic ‎Acid Coated Magnetic Nanoparticles

Document Type: Research Paper

Authors

1 ‎Department of Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, ‎Shiraz, Iran.‎

2 Nanotechnology Research Institute, Shiraz University, Shiraz, Iran.‎

Abstract

   A method for treating fuel oil and waste water of power plant is suggested which is including vanadium elimination through contacting with humic acid coated magnetic nano-adsorbent. The nano-adsorbent was modified with humic acid (HA) as a compound having carboxyl, hydroxyl and amin functional groups. HA/Fe3O4 nanoparticles were prepared by a co-precipitation procedure and were characterized using different techniques such as dynamic light scattering (DLS), Transmission electron microscopy (TEM), FTIR spectroscopy, X-ray diffraction spectroscopy. The surface charge of the nano-adsorbents was determined by Zeta potential technique and their magnetic properties were investigated by vibrational sample magnetometer (VSM). It was observed that the synthesized nanoparticles have a mean diameter about 14 nm. The effects of several experimental factors such as pH, adsorbent dosage, contact time and initial vanadium concentration, on the nano-adsorbent ability for vanadium removal were investigated. The best results were obtained using 10 mg/ml of nanoparticles at pH 5 and contact time 30 min. At this condition about 99.5 % of V(IV) could be removed from synthetic samples. Maximum adsorption capacity for vanadium (IV) was 8.97 mg/g which was fitted to Langmuir isotherm model. The ability of HA/Fe3O4 for the vanadium removal from fuel oil and wastewater of power plant was also investigated. It was observed that more than 93% of vanadium content could be removed from waste water and 67% form fuel oil using proposed nano-adsorbent.

Keywords