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Abstract  
   The present article describes the effects of thermal radiation and heat source/sink parameters on the 

mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of 

nanoparticles over an exponentially stretching sheet along with convective boundary condition. The 

governing nonlinear system of partial differential equations along with boundary conditions for this 

fluid flow converted to a system of nonlinear ordinary differential equations by using appropriate 

similarity transformations. The converted system of equations were solved numerically by using Runge-

Kutta fourth order method with shooting technique. The influence of various non-dimensional 

governing parameters on velocity, temperature and nanoparticle volume fraction profiles have been 

discussed and presented graphically. Furthermore, the impacts of these parameters on skin friction 

coefficient and local Nusselt number are exhibited graphically and analized. It found that the velocity 

profiles and skin friction coefficient increases with an increase in the mixed convection parameter 

whereas, an opposite trend observed with Casson fluid parameter and magnetic field parameter. The 

thermal boundary layer thickness enhanced with an increase in Biot number, magnetic field parameter, 

radiation parameter and heat source/sink parameter. Also, the local Nusselt number decreases with an 

increase in radiation parameter and heat source/sink parameter.  

Keywords: Thermal radiation, Heat source/sink, Mixed convection, Casson nanofluid, Exponential 

stretching.  

 

1. INRODUCTION  

   The study of heat and mass transfer of 

the laminar boundary layer flow over a 

stretching sheet has expedious 

development due to its numerous 

applications in different engineering and 

industrial manufacturing processes like 

aerodynamics, wire drawing, hot rolling, 

extrusion of plastic and rubber sheets, 

glass blowing, condensation process of 

metallic plates, fiber spinning and many 

others. During such processes, both 

stretching and simultaneous cooling or 

heating have a decisive influence on the 

quality of the final products. The study of 

boundary layer flow over a continuous 

stretching surface with constant velocity 

was initiated by Sakiadis [1]. Later, Crane 

[2] extended this concept to study two-

dimensional viscous fluid flow in which 

velocity varies over a linearly stretching 

sheet and obtained a similar solution. 

Wang [3] enlarged this concept for three-

dimensional flow and found exact 

similarity solution for the Navier-Stokes 

equations. The influence of suction/ 

blowing on heat and mass transfer over a 

stretching sheet was studied by Gupta and 

Gupta [4]. The problems of Sakiadis and 

Crane were extended by many researchers 

like Carragher and Crane [5], Bidin and 

Nazar [6], Bhattacharyya et al. [7] and 

Sandeep and Sugunamma [8] under 

various stretching sheets and boundary 

conditions.  
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   The magnetohydrodynamic (MHD) flow 

of an electrically conducting fluid has 

gained considerable interest in modern 

metallurgical and biomedical field. The 

process of coating of metals, MHD power 

generation systems, cooling of nuclear 

reactor, wound healing and MRI (Magnetic 

Resonance Imaging) to diagnose disease 

and surgical procedures are good examples 

of such fields. The Lorentz force interacts 

with the buoyancy force in governing the 

flow and temperature fields. Andersson [9] 

explain-ed the exact solution of the Navier-

Stokes equations for MHD flow. Some 

important literature on MHD steady flow 

and heat transfer on sliding plate can be 

found in Makinde [10]. Mahapatra et al. 

[11] investigated the steady magnetohydro-

dynamic stagnation point flow of power-

law fluid over stretching surface. 

Furthermore, Ishak et al. [12], Akbar et al. 

[13], Madhu and Kishan [14], Ijaz et al. 

[15] and Anantha et al. [16] were made to 

examine the effects of MHD flow over 

various stretching sheets under different 

aspects. 

   An extensive research has been conduct-

ed on boundary layer flow which is caused 

by an exponentially stretching sheet due to 

its wider applications in technology. For 

instance, in the case of annealing and 

tinning of copper wires the final product 

depends on the variations of stretching 

velocity and temperature distribution. In 

such processes, both the kinematics of 

stretching and the simultaneous heating or 

cooling has a remarkable influence on the 

quality of the final outputs. Magyari and 

Keller [17] were the first to study the heat 

and mass transfer in the boundary layers 

flow over an exponentially stretching 

sheet. Elbashbeshy [18] studied the flow 

past an exponentially stretching surface. 

The effects on thermal boundary layer of 

MHD flow over an exponential stretching 

surface investigated by Odat et al. [19]. 

Recently, Mukhopadhyay [20], Rudrasw-

amy and Gireesha [21], Hayat et al. [22] 

and Gangaiah et al. [23] investigated 

various effects of heat and mass transfer 

over an exponentially stretching sheet. 

   The term nanofluid was proposed by 

Choi referring to dispersions of nano-

particles ( 910 mtr ) in the base fluids such 

as water, ethylene glycol, and propylene 

glycol. Choi [24] showed that the addition 

of a small amount (less than 1 percent by 

volume) of nanoparticles to conventional 

heat transfer liquids increased the thermal 

conductivity of the fluid up to 

approximately two times. Masuda et al. 

[25] observed that the nanofluid enhances 

the thermal conductivity of the fluid flow. 

Buongiorno [26] noticed that Brownian 

diffusion and thermophoresis force are the 

main reasons behind the enhancement in 

heat transfer for nanofluid. Nield and 

Kuznetsov [27] studied analytically how 

the thermal instability in a porous medium 

layer saturated by a nanofluid. Angayar-

kanni and Philip [28] reviewed on thermal 

properties of nanofluids. Thereafter, 

Sheikholeslami [29], Reddy and Naikoti 

[30], Ramya et al. [31] and many other 

researchers investigated on the MHD flow 

of nanofluid over an exponentially 

stretching sheet under various physical 

phases. 

   To understand the nature of real life 

fluids like shampoos, paints, blood, 

condensed milk and printing ink it is 

necessary to study non-Newtonian fluids. 

The complex nature of non-Newtonian 

fluids presents a challenge to physicists 

and mathematicians. In the recent past, the 

study of non-Newtonian fluid flow over a 

stretching surface has become a field of 

active research due to its widespread 

applications in technology and industry. 

For instance, polymer extrusion in the 

plastic processing industries, wire drawing, 

petroleum production, glass blowing, paper 

production, artificial fibers, hot rolling, 

cooling of metallic sheets or electronic 

chips and many others. The Power-law 

fluid, tangent hyperbolic fluid, Jeffrey 

fluid, Casson fluid, Williamson fluid, 

Rivlin-Ericksen fluid are some types in 

non-Newtonian fluids. In such fluids 
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Casson fluid is a non-Newtonian fluid 

which exhibits yield stress. Casson [32] 

presented a visco-elastic fluid model, later 

it is known as Casson fluid model. Dash et 

al. [33] defined Casson fluid as a shear 

thinning liquid which is assumed to have 

an infinite viscosity at zero rate of shear, a 

yield stress below which has no flow 

occurs and a zero viscosity at an infinite 

rate of shear. Fredrickson [34] investigated 

the kinematics of deformation and flow 

behaviour of Casson fluid in a tube. Charm 

and Kurland [35] and Walwander et al. 

[36] performed on blood with varying 

haematocrits, anticoagulants and 

temperatures and strongly suggested that 

the behaviour of blood as a Casson fluid. 

Malik et al. [37] explained the behaviour 

of Casson nanofluid over vertically 

exponentially stretching cylinder. 

Recently, Prabhakar and Shankar [38], 

Arthur et al. [39], Raju [40], Anantha et al. 

[41] and Tamoor [42] are also very keenly 

discussed the nature of Casson fluid under 

various stretching surfaces with various 

boundary conditions. 

   Over the last few years, a considerable 

amount of experimental and theoretical 

work has been carried out to determine the 

effects of heat generation/absorption on the 

heat and mass transfer. Cooling of 

electronic equipment, hot spot/sink 

modification of polymer manufacture, 

cooling/heating of plastic products etc. are 

good examples of applications of heat 

source/sink. On the other hand, the effects 

of thermal radiation on heat and mass 

transfer of various fluids over a stretching 

surface have significant importance due to 

its wider applications in physics, 

engineering and space technology. For 

example, thermal radiation effects may 

play an important role in controlling heat 

transfer in polymer processing industry. 

Nuclear power plants, high-temperature 

plasmas, cooling of nuclear reactors, liquid 

metal fluids, MHD accelerators, satellites 

and space vehicles are some important 

applications of radiative heat transfer. 

Pramanik [43] explained the thermal 

radiation effects on Casson fluid over a 

porous stretching surface. Hayat et al. [44] 

examined the effects of chemical reaction 

and heat source/sink on mixed convection 

Casson nanofluid flow over a stretching 

surface. Bhattacharya et al. [45] derived an 

exact solution for Casson fluid flow over a 

permeable shrinking sheet with radiation 

effects. In the recent past, several works of 

literature Anki Reddy [46], Kumar et al. 

[47], Zia et al. [48] and Laxmi et al. [49] 

explained the influences of thermal 

radiation and heat source/sink on the MHD 

flow of various fluids over various 

stretching sheets under different boundary 

conditions. 

   The main aim of the present study is to 

describe the effects of mixed convection 

MHD flow of Casson fluid with zero 

normal flux of nanoparticles over an 

exponentially stretching sheet in presence 

of radiation and heat source/sink 

parameters along with the convective 

boundary condition. To get rid of 

gravitational effects at the surface of the 

sheet, we considered zero normal flux of 

nanoparticles in the fluid which is defined 

in boundary conditions. The present paper 

is organized as follows: Section 2 deals 

with the fluid flow model and how the 

governing non-linear partial differential 

equations are converted into non-linear 

ordinary differential equations is described 

in Sec. 3, method of solution. Section 4 

(numerical method) explains, how we 

solved the resulting system of ODE with 

boundary conditions using Runge-Kutta 

method with shooting technique. In 

Section 5, we analized both the numerical 

and graphical results. The conclusions of 

this paper are presented in Section 6. 

 

2. MATHEMATICAL MODELING 

   Consider the steady, two-dimensional 

mixed convection boundary layer 

incompressible, laminar flow of 

magnetohydrodynamic Casson fluid with 

zero normal flux of nanoparticles over an 

exponentially stretching sheet with thermal 

radiation and heat source/sink. A variable 
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magnetic field B(x) (normal to the surface) 

with suction and convective heat 

conditions are applied at the surface of the 

sheet. The rheological equation of state for 

an isotropic and incompressible flow of a 

Casson fluid can be written as [39, 44]: 

2 ( / 2 ) ,

2 ( / 2 ) ,

B y ij c

ij

B y c ij c

P e

P e

   


   

 


 





  (1) 

where B  is plastic dynamic viscosity of 

non-Newtonian fluid, 
yP  is the yield stress 

of the fluid,   is the product of the 

component of the deformation rate with 

itself, here .ij ije e  , and 
ije  is the ( , )thi j

component of the deformation rate and  c  

is the critical value of   based on the non-

Newtonian model. 

 

   
Figure 1. Flow configuration and co-

ordinate system. 

 

   The flow is assumed to be generated by 

linear stretching of the sheet from a slit 

with a large force such that the velocity of 

the sheet is an exponential order, caused by 

the simultaneous application of two equal 

and opposite forces along the x-axis. The 

x-axis is taken as the stretching surface in 

the direction of the fluid flow while the y-

axis is perpendicular to it. The flow is 

coinciding with the plane 0y   and is 

confined to 0y  . Keeping the origin fixed 

the sheet is then stretched with a velocity   

( wU ) varying linearly with the distance 

from the slit and 
fT  as the temperature at 

the surface. The mass flux of the 

nanoparticle at the wall is assumed to be 

zero. A variable magnetic field 2
0

x

LB B e  

is applied to the sheet, where 0B  is the 

initial strength of the magnetic field. By all 

these considerations the governing 

equations of continuity, momentum, 

energy and concentration for this flow are 

given as follows [39, 44]: 

0
u v

x y

 
 

 
,  (2) 

2

2

1
(1 ) ( )t

u u u
u v g T T

x y y
 




  
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  
  

 
2

( )c

B u
g C C





    , (3) 

2

2
( )

p p

T T k T Q
u v T T

x y c y c 


  
   
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2

1 r T
B

p

q DC T T
D

c y y y T y


 

     
    

      

, (4) 

2 2

2 2
   T

B

DC C C T
u v D

x y y T y

   
  

   
  (5) 

   The boundary conditions associated with 

the problem are: 

 

, , ( ),

0  at y 0  

0,   ,        

f

w w f

T
B

hT
u U v V T T

y k

DC T
D and

y T y

u T T C C as y



 


    



 
  

 

   

  (6) 

   In the above equations, u  and v  are 

velocity components in the x and y 

directions respectively, 



  is the 

kinematic viscosity,   is the coefficient of 

the viscosity,   is the density of the fluid, 

2 c

B

yP


   is the Casson fluid parameter, 

g  is the gravitational acceleration, t  is 

the thermal expansion coefficient, T  is the 

temperature of the fluid, T  is the ambient 

fluid temperature, c  is the concentration 

expansion coefficient, C  is the 

concentration of the fluid, C  is the 

ambient fluid concentration,   is the 

electrical conductivity, k  is thermal 

conductivity and  
pc  is the specific heat of 
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the fluid at constant pressure, rq  is the 

radiative heat flux, 2
0  

x

lQ Q e  is the heat 

generation/absorption parameter which 

may take on either positive ( heat source 

when 0Q   ) or negative ( heat sink when 

0Q   ) value, 0Q  is a constant, 
 

 
p

f

c

c





  

is the ratio of the effective heat capacity of 

the nanoparticles material to the heat 

capacity of the base fluid, BD  is the 

Brownian diffusion coefficient and TD  is 

the thermophoresis diffusion coefficient. 

Also, 0

x

L
wU U e  is the stretching velocity, 

0U  is the reference velocity, L  is the 

characteristic length, 2
0

x

L
wV v e   is a 

special type of velocity on the wall, where 

0v  is the initial strength of the suction, 

0wV   is the velocity of suction and 

0wV   is the velocity of blowing 
fh  is the 

convective heat transfer coefficient and 
fT  

is the hot fluid temperature at the sheet. 

   By Roseland approximation for radiation 

[50, 51], the radiative heat flux rq  is 

simplified as 
* 4

*

4
 

3
r

T
q

k y

 
 


 .  (7) 

   Here *  is the Stefan-Boltzmann 

constant and *k  is the absorption 

coefficient. Assume that the temperature 

differences, such as the term 
4T  within the 

flow, may be expressed as a linear function 

of temperature. After neglecting higher-

order terms in Taylor's series expansion for 
4T  about T  we have 

4 3 44 3T T T T    .  (8) 

By using eqns. (7) and (8), we get, 
* 3

*

16
 

3
r

T T
q

k y

  
 


   (9) 

 

 3. METOD OF SOLUTION 

   To scrutinize the problem, we introduce 

the following similarity transformations to 

derive a system of ordinary differential 

equations from the given system of non-

linear partial differential equations. 

0 2 2
0    ,   2   ( )

2

x x

L L
U

e y U L e f
L

   


  ,  

   ,   .
f

T T C C

T T C
    

 

 
 


      (10) 

where   is the similarity variable, ( , )x y  

is the stream function, ( ), ( )f     and 

( )   are dimensionless stream, 

temperature and concentration functions 

respectively. The equation of continuity is 

satisfied by choosing  ( , )x y  such that  

,  u v
y x

  
  
 

.  And hence 

0 2
0     ,     (   )

2

x x

L L
U

u U e f v e f f
L


     . 

   By substituting the above 

transformations, the equations (3) - (5) can 

be transformed into the system of ordinary 

differential equations  

 
21

(1 )  2  f ff f M f


         

   0N      , (11) 

1 4
(1 )   

3
H

R
f Q

Pr
       

  
2

( ) 0Nb Nt        , (12) 

      0
Nt

Sc f
Nb

         (13) 

   The corresponding dimensionless 

boundary conditions (6) become 

 

( ) ,  ( ) 1,  )  [ (0) 1], 

( )   ( )  at   0  and 

(f S f Bi

Nt

Nb

    

    

 

 

   

  
  

( ) 0,  ( ) 0,  ( ) 0     f as           

     (14) 

   Here the primes denote differentiation 

with respect to  , 
2

2   ( )t f

w

L g T T

U





  is 

the mixed convection parameter, 
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( )

c

t f

C
N

T T









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 is the concentration 

buoyancy parameter, 
2

0

0

2L B
M

U




  is the 

magnetic field parameter, 
pc

Pr
k

 


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is the Prandtl number, 
* 3

*

4 T
R

kk

   is the 

radiation parameter, 0

0

2
H

p

LQ
Q

U C
  is the 

heat source/sink parameter, BD C
Nb




  

is the Brownian motion parameter, 

 T fD T T
Nt

T










   is the thermophoresis 

parameter,  
B

Sc
D


  is the Schmidt 

number, 0

0

2
0

L
S v

U
   is the suction 

parameter and 
2f

w

h L
Bi

k U


  is the Biot 

number. 

   The parameters of physical interest in 

this problem are the skin friction 

coefficient 
xfC  and the local Nusselt 

number xNu   which represents the wall 

shear stress and the wall heat flux 

respectively and defined as    

2

 
,    

( )x

w w
f x

w f

x q
C Nu

U k T T



 
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shear stress and 
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is the wall heat flux. After using similarity 

transformations mentioned in Eqn. (10), 

the skin friction coefficient and the local 

Nusselt number are transformed to 
1

2
1
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2xx f
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L 
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1

2
4

( )  (1 )  (0)
2 3

x x

x R
Re Nu

L




   .  (16) 

Here 
  w

x

xU
Re


  is the local Reynolds 

number. 

 

4. NUMERICAL METHOD 

   The system of equations (11) - (13) along 

with the boundary conditions (14) are 

highly non-linear ordinary differential 

equations and hence unable to solve 

analytically. In order to solve these 

equations numerically, we used Runge-

Kutta fourth order method with shooting 

technique which is described by Dulal 

[52]. Here it is important to choose the 

appropriate finite values in boundary 

conditions for ( )   and ( )   at 0  . In 

order to determine the value of  , we 

start with some initial guess value for some 

particular set of physical parameters to 

obtain the values of (0)f 
 and (0) 

. 

Firstly, we use the following set of 

variables to reduce the above set of 

differential equations (11) - (13) into a 

system of first-order differential equations 

1 2 3

4 5 6 7

,     ,     ,   
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  (17) 

   Re-write the equations (11) - (13) with 

these variables, we get the system of first-

order differential equations as below: 
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   The boundary conditions are modified as 
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   In order to solve the system of equations 

(18) - (25) along with the boundary 

conditions, we require a value for 

4(0) (0)f   and 
5(0) (0)f   . But no 

such value is given at the boundary. Hence 

suitable guess functions are chosen for 

( ),  ( )f     and ( )   to calculate the 

values of (0),  (0) 
 in MATLAB 

algorithm for the Runge-Kutta method 

with shooting technique with step size

0.01  . We choose the values for

10max  , (0) 2  , (0) 1     and 

compared the calculated numerical values 

of (0)   with the existing results. The 

above procedure is repeated until we get 

the converged results within a tolerance 

limit 410 . 

 

5. RESULTS AND DISCUSSION 

   To study the behaviour of velocity, 

temperature and nanoparticle volume  

fraction profiles along with physical 

quantities wall shear stress and heat 

transfer rate for various values of the 

governing parameters namely, Casson 

fluid parameter ( ) , mixed convection 

parameter ( ) , concentration buoyancy 

parameter (N), magnetic field parameter 

(M), Prandtl number (Pr), radiation 

parameter (R), heat source/sink parameter 

 HQ  Brownian motion parameter (Nb), 

thermophoresis parameter (Nt), suction 

parameter (S) and the  Biot number (Bi), 

we used MATLAB programme for Runge-

Kutta fourth order method with shooting 

technique and computed the numerical 

computations. The results are reported in 

terms of Table 1 and graphs as shown in 

Figs. [2-27]. It is found that the obtained 

results are in excellent agreement with 

previous results. Throughout the study, for 

numerical results and plotting graphs we 

used 0.5  , 0.3  , 0.3M  , 

0.72Pr  , 0.3R  , 0.2HQ  , 0.6Sc  , 

0.2Nt Nb  , 0.3S   and 0.2Bi   

except the varied values in respective 

figures and tables.  

 

Table 1. Comparison of Nusselt number

[ (0)]    for various values of  , Nt and 

Nb when M = R = HQ = S = 0;   = N = 

0.3; Bi = 0.2; Sc = 0.7 

  Nt Nb Hayat 

[44] 

Present 

values 

0.5 0.2 0.2 0.15271 0.15281 

0.7   0.15204 0.15197 

0.9   0.15150 0.15146 

0.5 0.4  0.15195 0.15207 

 0.6  0.15106 0.15114 

0.5 0.2 0.4 0.15186 0.15180 

  0.6 0.15100 0.15109 

 
   To verify the accuracy of the applied 

numerical scheme, we compared the values 

of local Nusselt Number [ (0)  ] for 

various values of , ,Nt Nb  with the 

existing results of Hayat et al. [44] in 

Table 1 in absence of magnetic field, 

thermal radiation, heat source/sink, suction 

and the fixed values  for the parameters

0.3N   , 1Pr  , 0.2Bi   and 

0.7Sc  . The results are found in good 

agreement with small variation due to 

boundary conditions. 

 

5. 1. Velocity Profiles 

   To visualize the results, here we 

discussed the graphical outcomes of the 

problem in a physical sense. The 

influences of Casson fluid parameter (  ), 

mixed convection parameter ( ), 

concentration buoyancy parameter ( N ), 
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magnetic field parameter    ( M ) and 

suction parameter ( S ) on the 

dimensionless velocity profiles are plotted 

in Figures [2 - 6] respectively. It is clear 

from the Fig. 2 that, an increase in Casson 

fluid parameter   reduces the velocity 

boundary layer. 

 
Figure 2. Influence of Casson fluid 

parameter    on velocity profiles. 

 

    
Figure 3. Influence of mixed convection 

parameter   on velocity profiles. 

 

   Due to the increase in ,  increases the 

plastic dynamic viscosity of the fluid 

which increases the internal resistance of 

the fluid and hence reduces the velocity 

profiles of the fluid. Fig. 3 shows that the 

velocity profiles increase with the increase 

in mixed convection parameter ( ). The 

increase in mixed convection parameter 

has the tendency to increase the thermal 

buoyancy effects which acts like favorable 

pressure gradient and accelerates the fluid 

flow, so the velocity boundary layer 

thickness increases with the increase in  .  

   The effects of concentration buoyancy 

parameter N   on velocity profiles as 

depicted in Fig. 4. The similar explanation 

may present for the concentration 

buoyancy parameter behavior, so the 

velocity of the fluid enhances with an 

increase in ‘ N ’. 

 
Figure 4. Influence of concentration 

buoyancy parameter N on velocity profiles. 

 

 
Figure 5. Influence of magnetic field 

parameter M on velocity profiles. 

 

   Fig. 5 concludes that an increase in the 

magnetic field parameter M  decreases the 

transport process. Due to the increase in '

M ' produces a force which called as 

Lorentz force and the increase in that force 

produces much more resistance to the 

fluid. Hence the velocity of the fluid 

decreases with an increase in M.   It is 
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evident from the Fig. 6 that an increase in 

suction parameter (S) decreases the 

velocity of the fluid. Due to the suction, 

the fluid brought close to the sheet, so 

increases resistivity and hence reduces the 

velocity boundary layer thickness. 

 
Figure 6. Influence of suction parameter S 

on velocity profiles. 

 

5. 2. Temperature Profiles 

   Figures [7 – 16] depicts the effects of the 

various dimensionless parameters on 

thermal boundary layer. It is clear from the 

Fig. 7 that, an increase in suction 

parameter (S) shrinking the thermal 

boundary layer thickness. Since increase in 

suction cool down the layers of fluid flow 

and hence decreases the temperature 

profiles. The variation of a magnetic fluid 

parameter (M) on temperature profiles 

plotted in Fig. 8. Noticed that, an increase 

in M increases strong Lorentz force and 

hence increases thermal boundary layer 

thickness. An opposite trend observed in 

Fig. 9, the increase in Prandtl number (Pr) 

with temperature profiles. The 

enhancement in Pr decreases the thermal 

diffusivity and hence reduces the thermal 

boundary layer thickness. The impact of 

mixed convection parameter ( ) on 

thermal boundary layer thickness is 

visualized in Fig. 10. Since the increase in

 , increases the buoyancy force which has 

the tendency to induce more flow along the 

surface at the expense of small reductions 

in the temperature profile. 

 
Figure 7. Influence of suction parameter S 

on temperature profiles. 

 
Figure 8. Influence of magnetic field 

parameter M on temperature profiles. 

 
Figure 9. Influence of Prandtl number Pr 

on temperature profiles. 

 

   The impact of concentration buoyancy 

parameter (N) on temperature profiles is as 

depicted in      Fig. 11. It illustrates that an 



92                                     Gangaiah, Saidulu and Venkata Lakshmi 

increase in ‘N’ reduces the thermal 

buoyancy force and hence the temperature. 

   The influence of radiation parameter (R) 

on the thermal boundary layer is plotted in 

fig. 12 and noticed that the increase in R 

increases the radiative heat flux which 

enhances the thermal boundary layer of the 

 
Figure 10. Influence of mixed convection 

parameter   on temperature profiles. 

 
Figure 11. Influence of concentration 

buoyancy parameter N on temperature 

profiles  

 

fluid. From Fig. 13, increase in heat 

source/sink parameter ( HQ ) increases the 

thermal boundary layer thickness. In fact, 

an increase in HQ
 leads to higher 

temperature field in the thermal boundary 

layer of the field.   It is observed from Fig. 

14 that, an increase in Brownian motion 

parameter Nb increase the temperature of 

the fluid. 

 
Figure 12. Influence of radiation 

parameter R on temperature profiles. 

 
Figure 13. Influence of heat source/sink 

parameter HQ  on temperature profiles. 

 

 
Figure 14. Influence of Brownian motion 

parameter Nb on temperature profiles. 

 

   Due to Brownian motion, more collisions 

with fast-moving atoms in the fluid take 

place and hence increases the kinetic 
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energy of the particles suspended in the 

fluid. Fig. 15 reveals that thermophoresis 

parameter Nt enhances the temperature 

profiles of the fluid with an increase in Nt. 

The enhancement of thermophoresis force 

moves the nanoparticles from the hot 

surface to the cold one and hence the 

temperature of the fluid increases with Nt. 

The effect of Biot Number Bi on 

temperature profiles exhibited in Fig. 16. 

Since ‘Bi’ is the dimensionless parameter 

and it gives the  

Figure 15. Influence of thermophoresis 

parameter Nt on temperature profiles. 

    
Figure 16. Influence of Biot number Bi on 

temperature profiles.  

 

ratio of the heat transfer rate to the thermal 

conductivity. As an increase in Bi (small 

values of Bi) the heat flux is increased 

which leads to enhancing the temperature 

profiles.  

 

5. 3. Concentration Profiles 

   The effects of various parameters on 

nanoparticle volume fraction profiles 

displayed in Figs. [17-21]. 

   The influence of Biot number (Bi) on 

concentration profiles displayed in Fig. 17. 

It can be seen from the figure that, a rise in 

the 'Bi' increases convective mass transfer 

coefficient of the fluid as an effect of that 

it increases the concentration boundary 

layer thickness. 

    
Figure 17. Influence of Biot number Bi on 

nanoparticle volume fraction profiles. 

 
Figure 18. Influence of Brownian motion 

parameter Nb on nanoparticle volume 

fraction profiles. 

 

   The impact of Brownian motion 

parameter (Nb) on the concentration 

profile plotted in Fig. 18. Due to the 

increase in Nb, the Brownian motion takes 

place and increases diffusion of the fluid. 

As a result, the concentration boundary 

layer thickness decreases.      Fig. 19 shows 

the effect of thermophoresis parameter (Nt) 
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on concentration profiles. With an increase 

in Nt, increases thermophoretic force 

which moves nanoparticles from hot 

region to cool region and consequently, it 

increases the concentration boundary layer 

thickness. The thickness of the 

concentration boundary layer significantly 

large for a slight increase in Nt. The effect 

of the Prandtl number Pr on the 

nanoparticle volume fraction depicted in 

Fig. 20. A small variation (initially 

increasing near the sheet and then 

decreasing away from the sheet) observed 

in the concentration boundary layer with 

the increase in the Prandtl number. The 

impacts of the Schmidt number (Sc) on 

nanoparticle volume fraction profile are 

displayed in Fig. 21. It reveals that, with an 

increase in ‘Sc’ the mass diffusivity 

decreases and hence the concentration 

boundary layer thickness. 

 
Figure 19. Influence of thermophoresis 

parameter Nt on nanoparticle volume 

fraction profiles. 

 

   Also, the figures 22 and 23 displays the 

variations of the local skin friction 

coefficient [
xfC ] with various values of 

magnetic field parameter (M) for three 

different values of Casson fluid parameter 

(  ) and mixed convection parameter ( ), 

respectively. It was found that skin friction 

coefficient f xC
 increases with an increase 

in   and reverse nature observed with 

 
Figure 20. Influence of Prandtl number Pr 

on nanoparticle volume fraction profiles. 

 
Figure 21. Influence of Schmidt number Sc 

on nanoparticle volume fraction profiles. 

   
Figure 22. Effects of ’M’ and   on the skin 

friction coefficient. 

 

both M and  . Figures 24 and 25 represent 

the behaviour of the local Nusselt number [

(0)  ] with thermophoresis parameter (Nt) 

for three different values of Biot number (Bi) 
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and Brownian motion parameter (Nb) 

respectively. 

 
Figure 23. Effects of ‘M’ and    on the skin 

friction coefficient. 

 

   It is clear from the figures that, the [

(0)  ] value increase with the increasing 

values of ‘Bi’ and reverse trend observed 

with the increasing values of 'Nt' and ‘Nb’.  

 
Figure 24. Effects of ‘Nt’ and ‘Bi’ on the 

local Nusselt number. 
 

   Figures 26 and 27 explains the change in 

local Nusselt number [ (0)  ] with heat 

source/sink parameter ( )HQ  for three 

different values of radiation parameter (R) 

and Prandtl number (Pr) respectively. As 

an increase in ' HQ ' and 'R' decrease the 

value of [ (0)  ], whereas an increase in 

'Pr' increases the local Nusselt number. 

From these, we conclude that local Nusselt 

number decreases with Nt, Nb, HQ
 and R 

and it increases with Bi and Pr. 

 
Figure 25. Effects of ‘Nt’ and ‘Nb’ on local 

Nusselt number. 

 
Figure 26. Effects of ‘ HQ ’ and ‘Pr’ on the 

local Nusselt number. 

 
Figure 27. Effects of ‘ HQ ’ and ‘R’ on the 

local Nusselt number. 
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6. CONCLUSIONS 

   The present study investigated the 

various effects of thermal radiation and 

heat source/sink parameters on the mixed 

convective MHD flow of Casson nanofluid 

with passive nanoparticles over an 

exponentially stretching sheet. MATLAB 

software was used for solving Runge-Kutta 

fourth order method with shooting 

technique and then analyzed numerically 

and graphically. The key findings of this 

paper are: 

   1. The velocity profile of the fluid 

enhances with the increasing values of 

mixed convection parameter and 

concentration buoyancy parameter while it 

decreases with an increase in the Casson 

fluid parameter, magnetic field parameter 

and suction parameter.  

   2. A rise in radiation parameter and heat 

source/sink parameters increases the 

thermal boundary layer thickness. 

   3. The temperature profiles of the fluid 

reduce with an increase in mixed 

convection parameter, suction parameter, 

Prandtl number and concentration 

buoyancy number. 

   4. An Increase in Brownian motion 

parameter, thermophoresis parameter, 

magnetic field parameter and Biot number 

enhances the temperature profiles of the 

fluid. 

   5. The nanoparticle volume fraction 

profiles decrease with an increase in 

Brownian motion parameter, Prandtl 

number and Schmidt number and increase 

with thermophoresis parameter and Biot 

number. 

   6. The skin friction coefficient decreases 

with an increase in magnetic field 

parameter, Casson fluid parameter and 

increases with mixed convection 

parameter. 

   7. The local Nusselt number increases 

with an increase in Biot number and 

Prandtl number and reverse nature 

observed with thermophoresis parameter, 

Brownian motion parameter, radiation 

parameter and heat source/sink parameter. 
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