Ag-Conjugated Nanoparticle Biosynthesis Mediated by Rosemary Leaf Extracts Correlates with Plant Antioxidant Activity and Protein Content

Document Type : Research Paper


1 Department of Biology, Golestan University, Shahid Beheshti Ave., P. O. Box: 155, Gorgan, I. R. Iran.

2 Department of Biology, Hakim Sabzevari University, P. O. Box: 397, Sabzevar, I. R. Iran.


   In recent years, the world has witnessed an explosion of interest in biogenic synthesis of metallic nanoparticles (NPs), using plant extracts; however, the plant constituents involved in this reaction are poorly characterized. Here, major components of Rosemary (Rosmarinus officinalis L.) leaf extracts were isolated monthly during 2012-2013 and their competences for Ag–conjugated nanoparticle biosynthesis were studied. Formation of Ag/AgCl–NPs was examined using UV-visible spectroscopy and characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and Transmission electron microscopy (TEM). Correlation analysis showed that extracts with more protein contents and higher total reducing capacity were more efficient in biosynthesis of Ag/AgCl–NPs. There existed no correlation between total phenolic, ascorbic acid and anthocyanin contents with Ag/AgCl–NPs biosynthesis activity. These results partly explain the mechanisms controlling plant mediated biosynthesis of nanoparticles, with possible applications in standardization of plant materials harvested throughout a year.


1. Wijnhoven, S. W., Peijnenburg, W. J., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D. (2009). ‘‘Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment’’, Nanotoxicology, 3: 109-138.
2.   Mohammadinejad, R., Pourseyedi, S., Baghizadeh, A., Ranjbar, S., Mansoori, G.A. (2013). ‘‘Synthesis of Silver Nanoparticles Using Silybum Marianum Seed Extract’’, Int. J. Nanosci. Nanotechnol, 9: 221-226.
3.   Khatami, M., Soltani Nejad, M., Pourseyedi, S. (2015). ‘‘Biogenic Synthesis of Silver Nanoparticles Using Mustard and Its Characterization’’, Int. J. Nanosci. Nanotechnol, 11: 281-288.
4.   Shams, S., Pourseyedi, S., Hashemipour Rafsanjani, H. (2014). ‘‘Green Synthesis of Silver Nanoparticles and Its Effect on Total Proteins in Melia Azedarach Plant’’, Int. J. Nanosci. Nanotechnol, 10: 181-186.
5.   Shams, S., Pourseyedi, S., Hashemipour Rafsanjani, H. (2014). ‘‘Green Synthesis of Silver Nanoparticles: Eco-Friendly and Antibacterial’’, Int. J. Nanosci. Nanotechnol, 10: 127-132
6.   Ghaedi, M., Yousefinejad, M., Safarpoor, M., Khafri, H.Z., Purkait, M. K. (2015). ‘‘Rosmarinus officinalis L. leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties’’, Journal of Industrial and Engineering Chemistry, 31: 167-172.
7.   Fierascu, I. C., Bunghez, I. R., Somoghi, R., Fierascu, I., Ion, R. M. (2014). ‘‘Characterization of silver nanoparticles obtained by using Rosmarinus officinalis extract and their antioxidant activity’’, Rev. Roum. Chim, 59: 213-218.
8.   Goodarzi, V., Zamani, H., Bajuli, L., Moradshahi, A. (2014). ‘‘Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticle synthesis’’, Molecular Biology Research Communications, 3: 165-174.
9.   Benzie, I., Strain, J. (1999). ‘‘Ferric reducing (antioxidant) power as a measure of antioxidant capacity: the FRAP assay’’, Methods in enzymology, 299: 15-27.
10.          Cuendet, M., Hostettmann, K., Potterat, O. (1997). ‘‘Iridoid glucosides with free radical scavenging properties from Fagraea blumei’’, Helvetica Chimica Acta, 80: 1144-1152.
11.          Meda, A., Lamien, C. E., Romito, M., Millogo, J., Nacoulma, O. G. (2005). ‘‘Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity’’, Food chemistry, 91: 571-577.
12.          Chang, C-C., Yang, M-H., Wen, H-M., Chern, J-C. (2002). ‘‘Estimation of total flavonoid content in propolis by two complementary colorimetric methods’’, Journal of food and drug analysis, 10.
13.          De Pinto, M., Francis, D., De Gara, L. (1999). ‘‘The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells’’, Protoplasma, 209: 90-97.
14.          Mita, S., Murano, N., Akaike, M., Nakamura, K. (1997). ‘‘Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β‐amylase and on the accumulation of anthocyanin that are inducible by sugars’’, The Plant Journal, 11: 841-851.
15.          Kochert, G. (1978). ‘‘Carbohydrate determination by the phenol-sulfuric acid method’’, Handbook of phycological methods, 2: 95-97.
16.          Bradford, M. M. (1976). ‘‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding’’,  Analytical biochemistry, 72: 248-254.
17.          Nezamdoost, T., Bagherieh-Najjar, M. B., Aghdasi, M. (2014). ‘‘Biogenic synthesis of stable bioactive silver chloride nanoparticles using Onosma dichroantha Boiss. root extract’’, Materials Letters, 137: 225-228.
18.          Liu, C., Yang, D., Wang, Y. (2012). ‘‘Fabrication of antimicrobial bacterial cellulose Ag/AgCl nanocomposite using bacteria as versatile biofactory’’, J Nanoparticle Res, 14: 1-12.
19.          Gopinath, V., Priyadarshini, S., Meera Priyadharsshini, N. (2013). ‘‘Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn’’, Mater Lett, 91: 224-227.
20.          Kohan Baghkheirati, E., Bagherieh-Najjar, M. B., Khandan Fadafan, H., Abdolzadeh, A. (2015). ‘‘Synthesis and antibacterial activity of stable bio-conjugated nanoparticles mediated by walnut (Juglans regia) green husk extract’’, Journal of Experimental Nanoscience, 1-6.
21.          Khansari, A., Enhessari, M., Salavati-Niasari, M. (2013). ‘‘Synthesis and Characterization of Nickel Oxide Nanoparticles from Ni(salen) as Precursor’’, Journal of Cluster Science, 24: 289-297.
22.          Farhadi, S., Roostaei-Zaniyani, Z. (2011). ‘‘Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II) nitrate, [Ni(NH3)6](NO3)2, complex’’, Polyhedron, 30: 1244-1249.
23.          Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., Akbarzadeh, A., Riazi, G., Razzaghi-Abyaneh, M. (2016). ‘‘Biogenic Approach using Sheep Milk for the Synthesis of Platinum Nanoparticles: The Role of Milk Protein in Platinum Reduction and Stabilization’’, Int. J. Nanosci. Nanotechnol, 12: 199-206.
24.          Chowdhury, S., Basu, A., Kundu, S. (2014). ‘‘Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria’’, Nanoscale research letters, 9: 365.
25.          Fran ccedil ois EraM, Marcelle, L. S., Cecile, O. E., Agnes, A. N., Djiopang, Y. S., Fanny, A. E. M., Lidwine, N., Harouna, M., Emmanuel, M. M. (2016). ‘‘Unexplored vegetal green synthesis of silver nanoparticles: A preliminary study with Corchorus olitorus Linn and Ipomea batatas (L.) Lam’’, African Journal of Biotechnology, 15: 341-349.