Design and Test of New Robust QCA Sequential Circuits

Document Type : Research Paper

Author

Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran.

Abstract

   One of the several promising new technologies for computing at nano-scale is quantum-dot cellular automata (QCA). In this paper, new designs for different QCA sequential circuits are presented. Using an efficient QCA D flip-flop (DFF) architecture, a 5-bit counter, a novel single edge generator (SEG) and a divide-by-2 counter are implemented. Also, some types of oscillators, a new edge-triggered K-pulse generator (KPG) and a negative pulse generator (NPG) are presented for implementation in QCA. The robust layouts of proposed circuits are designed, implemented and simulated using QCADesigner software without any wire crossing. The fault effects at the output of proposed DFF due to the missing cell defects are analyzed. Also, the robustness of the proposed QCA designs with respect to temperature variations is examined. The proposed designs are compared with the previous QCA works and conventional CMOS technology. The simulation results confirm that the novel QCA architectures work properly and can be simply used in designing of QCA sequential circuits.

Keywords


  1. ITRS (International Technology Roadmap for Semiconductors), www.itrs.net/, (2016).
  2. Ganesh, E. N., Lal, K., Rangachar, M. J. S., (2008). “Implementation of Quantum cellular automata combinational and sequential circuits using Majority logic reduction method”, Int. J. Nanotech. and Applications, 2(1): 89-106.
  3. Zhang, R., Walnut, K., Wang, W., Jullien, G., (2004). “A method of majority logic reduction for quantum cellular automata”, IEEE Trans. on Nanotech., 3: 443-450.
  4. Cho, H., Earl, E., (2009). “Adder and multiplier design in quantum-dot cellular automata”, IEEE Trans. on Computers, 58(6): 721-727.
  5. Safavi A., Mosleh, M., (2016). “Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate”, International Journal of Nanoscience and Nanotechnology, 12(1): 55-69.
  6. Dallaki, H., Mehran, M., (2015). “Novel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology”, International Journal of Nanoscience and Nanotechnology, 11(4): 257-262.
  7. Swapna, M., Hariprasad, A., (2016). “Design of Sequential Circuit Using Quantum-Dot Cellular Automata (QCA)”, International Journal of Advanced Engineering Research and Science (IJAERS), 3(9): 95-100.
  8. Lim, L. A., Ghazali, A., Yan, S. C. T., Fat, C. C., (2012). “Sequential circuit design using Quantum-dot Cellular Automata (QCA)”, IEEE International Conference on Circuits and Systems (ICCAS), DOI: 10.22161/ijaers/3.9.15: 162-167.
  9. Gladshtein, M., (2016). “Quantum-dot cellular automata serial decimal processing-in-wire: Run-time reconfigurable wiring approach”, Microelectronics Journal, 55:152–161.
  10. Rezaei, A., Saharkhiz, H., (2016). “Design of low power random number generators for quantum-dot cellular automata”, Int. J. Nano Dimens., 7(4): 308-320.
  11. Angizi, Sh., Moaiyeri, M. H., Farrokhi, Sh., Navi, K., Bagherzadeh, N., (2015). "Designing quantum-dot cellular automata counters with energy consumption analysis", Microprocessors and Microsystems, 39(7): 512-520.
  12. Hashemi, S., Navi, K., (2012). "New robust QCA D flip flop and memory structures", Microelectronics Journal, 43: 929–940.
  13. Abutaleb, M. M., (2017). "Robust and efficient quantum-dot cellular automata synchronous counters", Microelectronics Journal., 61: 6-14.
  14. Angizi, Sh., Sayedsalehi, S., Roohi, A., Bagherzadeh, N., Navi, K., (2015). "Design and verification of new n-Bit quantum-dot synchronous counters using majority function-based JK flip-flops", Journal of Circuits, Systems and Computers, 24(10): 1550153-1-1550153-17.
  15. H¨anninen, I., Takala, J., (2010). “Binary Adders on Quantum-Dot Cellular Automata”, J Sign Process Syst., 58: 87-103.
  16. Lakshmil, S., Athishi, G., Ganesh, M. C., (2010). “Design of Subtractor using Nanotechnology Based QCA”, ICCCCT, Ramanathapuram, India, 384-388.
  17. Navi, K., Maeen, M., Foroutan, V., Timarchi, S., Kavehei, O. A., (2009). “Novel low-power full-adder cell for low voltage”, Integration, the VLSI j., 42: 457-467.
  18. Ahmad, F., Bhat, G.M., Ahmad, P.Z., (2014). “Novel Adder Circuits Based on Quantum-Dot Cellular Automata (QCA)”, Circuits and Systems., 5: 142-152.
  19. Abedi, D., Jaberipur, G., and Sangsefidi, M., (2015). “Coplanar Full Adder in Quantum-Dot Cellular Automata via Clock-Zone-Based Crossover”, IEEE transactions on nanotechnology, 14(3): 497-504.
  20. Santra, A. S., Santra, S., (2015). “Design and Simulation of Quantum Cellular Automata Based XOR Gate With Optimize Complexity and Cell Count”, Journal of Emerging Technologies and Innovative Research (JETIR), 2(1): 110-116.
  21. http://www.mina.ubc.ca/qcadesigner, (2016).
  22. Vankamamidi,V., Ottavi, M., Lombardi, F., (2008). “Two-dimensional schemes for clocking timing of QCA circuits”, IEEE Transactions on Computer aided Design of Integrated Circuits and Systems, 27(1): 34-44.
  23. Chabia, A. M., Roohi, A., Khademolhosseini, H., Sheikhfaal, Sh., Angizi, Sh., Navid, K., DeMara, R. F., (2017), "Towards ultra-efficient QCA reversible circuits", Microprocessors and Microsystems, 49: 127-138.
  24. Hayati, M., Rezaei, A., (2015). “Design of novel efficient adder and subtractor for quantum‐dot cellular automata”, International Journal of Circuit Theory and Applications, 43 (10): 1446-1454.
  25. Tahoori, M. B., Momenzadeh, M., Huang, J., Lombardi, F., (2004). “Testing of quantum cellular automata”, IEEE Transactions on Nanotechnology, 3(4):432–442.
  26. Rezaei, A., (2017). “Design of Optimized Quantum-dot Cellular Automata RS Flip Flops”, International Journal of Nanoscience and Nanotechnology, 13(1): 53-58.