Chemical Synthesis of Zinc Oxide Nanoparticles and Its Application of Dye Decolourization

Document Type : Research Paper


Department of Chemical Engineering, Faculty of Engineering and Technology, Annamalai University, P. O. Box 608002, Cuddalore, India.


   In the present study, various size of Zinc Oxide Nanoparticles (ZnO NPs) was synthesized via Sol-gel method. The photocatalytic activity of the synthesized ZnO NPs was investigated for the Decolourization of three different colored dyes viz. Congo Red, Acid Blue 9 and Coomassie Brilliant Blue R-250 under UV lamp. Zinc Chloride (Zncl2) and Sodium Hydroxide (NaOH) were used for the chemical synthesis. The SEM and FTIR analysis shows that the synthesized ZnO NPs are crystalline in nature. The synthesized NPs were then checked for its efficiency to decolorize the above same dyes under the condition of 20 mg/L dye and 0.3 g/L of photocatalyst dosage. The investigation results showed that each size of ZnO NPs was able to effectively decolorize the dye solution and the efficiency was found to be 88% for Congo red (CR: 27-29 nm), 73% for Acid Blue 9 (AB: 24-27 nm) and 70% for Coomassie Brilliant Blue R-250 (BB: 29-32 nm). Out of which CR dye oxidation rate was higher than the other dyes and especially BB dye possible to decolorize by using synthesized ZnO NPs.  Hence, it was concluded that ZnO NPs by itself is strong enough to decolorize these dye aqueous solutions. Moreover, the photocatalytic activity of NPs on dye was the decisive factor/unique property for dye reduction rather than size and morphology of the ZnO NPs.


  1. Mousavi K., S., Lahouti, M., (2018). “Application of ZnO Nanoparticles for Inducing Callus in Tissue Culture of Rapeseed”, Int. J. Nanosci. Nanotechnol., 14: 133-141.
  2. Layeghi, R., Farbodi, M., Ghalebsaz-Jeddi, N., (2016). “Preparation of Polyaniline-Polystyrene-ZnO Nanocomposite and Characterization of Its Anti-Corrosive Performance”, Int. J. Nanosci. Nanotechnol., 12: 167-174.
  3. Bora, A., Mishra, P., (2016). “Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin–sodium alginate/casein) bilayer film”, J. Food Sci. Technol., 53: 3704-3714.
  4. Li, D., Hu, J., Fan, F., Bai, S., Luo, R., Chen, A., (2012). “Quantum-sized ZnO nanoparticles synthesized in aqueous medium for toxic gases detection”, J. Alloys Compound, 539: 205-209.
  5. Rajeswari, Y. N., Srinivasan, R., Chandra, B. A., (2009). “Multi-capping agents in size confinement of ZnO nanostructured particles”, Opt. Mater., 31: 15701574.
  6. Al-Heniti, S., Badran, R. I., Umar, A., Al-Ghamdi, A., Kim, S. H., Al-Marzouki, F., (2011). “Temperature dependent structural and electrical properties of ZnO nanowire networks”, J. Nanosci. Nanotechnol., 11: 1–7.
  7. Pal, S., Mondal, S., Maity, J., Mukherjee, R., (2018). “Synthesis and Characterization of ZnO Nanoparticles using Moringa Oleifera Leaf Extract: Investigation of Photocatalytic and Antibacterial Activity”, Int. J. Nanosci. Nanotechnol., 14: 111-119.
  8. Waldo, J. E. B., Martijn, M. W., Martijn, K., Xiaoniu, Y., Rene, A. J. J., (2005). “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells”, J. Phys. Chem., B, 109: 9505-9516.
  9. Prellier, W., Fouchet, A. Mercey, B., (2003). “Oxide-diluted magnetic semiconductors: A Review of the experimental statuses”, J. Phys. Condens. Matter, 15: R1583.
  10. Liu, B., Torimoto, T., Yoneyama, H., (1998). “Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents”, J. Photochem.Photobiol. A: Chem., 113: 93-97.
  11. Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., Murugesan, V.’ (2003). “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2”, Sol. Energy Mater. Sol., C, 77: 65-82.
  12. Scarisoreanu, N., Metai, D. G., Dinescu, G., Epurescu, G., Ghica, C., Nistor, L. C., Dinescu, M., (2005). “Properties of ZnO thin films prepared by radio-frequency plasma beam assisted laser ablation”, Appl. Surf. Sci., 247: 518-525.
  13. Anaraki, F. A., (2016). “A Low Temperature Hydrothermal Synthesis of ZnO Doped SnO2 Nanoparticles with High Photocatalytic Activity”, Int. J. Nanosci. Nanotechnol., 12: 1-5.
  14. Ristiac, M., Musiac, S., Ivanda, M., Popoviac, S. (2005). “Sol-gel synthesis and characterization of nanocrystalline ZnO powders”, J. Alloys Compd., 397: L1-L4.
  15. Chang, S., Yoon, S. O., Park, H. J., Sakai, A., (2002). “Luminescence properties of Zn nanowires prepared by electrochemical etching”, Mater. Lett., 53: 432-436.
  16. Wang, R. C., Tsai, C. C., (2009). “Efficient synthesis of ZnO nanoparticles, nanowalls, and nanowires by thermal decomposition of zinc acetate at a low temperature”, Appl. Phys. A., 94: 241-245.
  17. Wu, J. J., Liu, S. C., (2002). “Low-temperature growths of well-aligned ZnO nanorods by chemical vapor deposition”, Adv. Mater., 14: 215-218.
  18. Lamas, D. G., Lascalea, G. E., Walsoc, N. E., (1998). “Synthesis and characterization of nanocrystalline powders for partially stabilized zirconia ceramics”, J. Eur. Ceram. Soc., 18: 1217-1221.
  19. Khorsand, Z., Abid, A., Majid, W. H., Wang, H. Z., Yousefi, R., Golsheikh, M., Ren, Z. F., (2013). “Sonochemical synthesis of hierarchical ZnO nanostructures”. Ultrason. Sonochem, 20: 395-400.
  20. Shetty, A., Nanda, K., (2012). “Synthesis of zinc oxide porous structures by anodisation with water as an electrolyte”, Appl. Phys., A., 109: 151-157.
  21. Kooti, M., Nagdhi Sedish, A., (2013), “Microwave-assisted combustion synthesis of ZnO nanoparticles”, J. Chem., doi:10.1155/2013/562028.
  22. Singh, O., Kohli, N., Singh, R. C., (2013). “Precursor controlled morphology of zinc oxide and its sensing behavior”, Sens. Actuators, B, 178: 149-154.
  23. Rajesh, D., Vara Lakshmi, B., Sunandana, C. S., (2012). “Two-step synthesis and characterization of ZnO nanoparticles”, Physica. B-Cond. Mater., 407: 4537-4539.
  24. Vazquez, A., Lopez, I. A., Gomez, I., (2013). “Growth mechanism of one-dimensional zinc sulfide nanostructures through electrophoretic deposition”. J. Mater. Sci., 48: 2701-2704.
  25. Movahedi, M., Mahjoub, Y. I., Kowsari, E., (2010). “Microwave Assisted Synthesis of Polycrystalline Flower-like Zinc Oxide Nanostructure Using Dicationic Ionic Liquid”, Int. J. Nanosci. Nanotechnol., 6: 216-222.
  26. Singh, A. K., Viswanath, V., Janu, V. C., (2009). “Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles”, J. Lumin., 129: 874-878.
  27. Reife, A., Fremann, H. S., (1996). “Environmental Chemistry of Dyes and Pigments”, Wiley.
  28. Iqbal, M. J., Ashiq, M. N., (2007). “Adsorption of dyes from aqueous solutions on activated charcoal”, J. Hazard. Mater., 139: 57-66.
  29. Pagga, U., Brown, D., (1986). “The degradation of dyestuffs. Part II. Behavior of dyestuffs in aerobic biodegradation tests”, Chemosphere, 15: 479-491.
  30. Fu, Y., Tiraraghavan, Y., (2004).  “Removal of Congo red from an aqueous solution by fungus Aspergillus niger”, Adv. Environ. Res., 7: 239-247.
  31. Majcen-Le Marechal, A., Slokar, Y. M., Taufer, T., (1997), “Decoloration of chlorotriazine reactive azo dyes with H2O2/UV”, Dyes Pigments, 33: 281-298.
  32. Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J. M., (2002) “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania”, Appl. Catal. B: Environ., 39: 75-90.
  33. Pelegrini, R., Zamora, P. P., Andrade, A. R., Reyes, J., Duran, N., (1999). “Electrochemically assisted photocatalytic degradation of reactive dyes”, Appl. Catal. B: Environ., 22: 83-90.
  34. Daneshvar, N., Salari, D., Khataee, A. R., (2004). “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, J. Photochem. Photobiol. A: Chem., 162: 301-317.
  35. Fouad, O. A., Ismail, A., Zaki, Z. I., Mohamed, R. M., (2006). “Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity”, Appl. Catal. B: Environ., 62: 144-149.
  36. Park, S. B., Kang, Y. C., (1997). “Photocatalytic activity of nanometer size ZnO particles prepared by spray pyrolysis”, J. Aerosol. Sci., 28: 3473-3474.
  37. Oman, Z., Harry, B., Nuryatini, H., (2013). “Synthesis of ZnO nanoparticles for microwave-induced rapid catalytic decolorization of congo red dye”, Adv. Mat. Lett., 4: 662-667.
  38. Cortes, J. A., Alarcon-Herr, M. T., Perez-Robles, J. F., VillicanaMéndez, M., Gonzalez-Hernandez, J., (2007). “Kinetic degradation of acid blue 9 through the TiO2/UV advanced oxidation process,” The Nanotechnology Conference and Trade Show (NSTI Nanotech), Santa Clara.
  39. Hajira, T., Uroos, A., (2014), “Lignocellulosic: Non-Conventional Low Cost Biosorbent for the Elution of Coomassie Brilliant Blue (R-250)”, Int. J. Chem., 6: 1-2.
  40. Huihu, W., Changsheng, X., (2007). “Comparison of dye degradation efficiency using ZnO powers with various size scales”, J. Haz. Mat., 141: 645-652.
  41. Li, D., Haneda, H., (2003). “Morphologies of zinc oxide particles and their effects on photocatalysis”, Chemosphere, 51: 129-137.
  42. Habibi, M., Khaledi, S. M., (2008). Preparation and proposed mechanism of ZnO Nanostructure Thin Film on Glass with Highest c-axis Orientation. Int. J. Nanosci. Nanotechnol, 4: 13-16.
  43. Wang, L., Wang, A., (2008). “Adsorption properties of congo red from aqueous solution onto surfactant-modified montmorillonite”, J. Hazard. Mater., 160: 173-180.
  44. Shvalagin, (2007). “National Oceanic and Atmospheric Administration (NOAA)/National Weather Service”, Climate Prediction Center website: Cited 16 July.
  45. Martinello, B. S., (2012). “Synthesis of ZnO nanoparticles by sol-gel processing”, Av. Universitaria, 1105: 800-806.
  46. Khadhraoui, Trabelsi, (2009). “Discoloration and detoxification of a Congo red dye solution by means of ozone treatment for a possible water reuse”, J. Hazard. Mater., 161: 974-981.
  47. Banisharif, A., Hakim, E, S., Anaraki Firooz, A., Khodadadi, A., Mortazavi, Y., (2013). “TiO2/Fe3O4 Nanocomposite Photocatalysts for Enhanced Photo-Decolorization of Congo Red Dye”, Int. J. Nanosci. Nanotechnol., 9: 193-202.
  48. Khan, R. S., Pathak, B., Fulekar, M., (2017). “Spherical Surfaced Magnetic (Fe3O4) ‎Nanoparticles as Nano Adsorbent Material ‎for Treatment of Industrial Dye Effluents”, Int. J. Nanosci. Nanotechnol., 13, 169-175.