Short Communication

Comparative Studies on the Interaction of Proteinase-K with Fe₂O₃, Fe₃O₄ and SiO₂ Nanoparticles

E. Yadollahi¹, B. Shareghi^{1,*} and M. Salavati²

¹Department of Biology, University of Shahrekord, P.O. Box: 115, Shahrekord, I. R. of Iran. ²Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, I. R. Iran.

> (*) Corresponding author: b_shareghi@yahoo.com (Received: 12 April 2015 and Accepted: 05 December 2016)

Abstract:

The interaction of Fe_2O_3 , Fe_3O_4 and SiO_2 nanoparticles with proteinase K activity was investigated using UV-vis spectroscopy. Proteinase K EC (3.4.21.14) is a member of serine protease family, which is produced from fungus Tritirachum album Limber. The effects of nanoparticles on proteinase K activity were studies at 40 °C in pH 7.0 using sodium phosphate as buffer. It was found that in the presence of nano-Fe₂O₃ and nano-Fe₃O₄, V_{max} was decreased but K_m was constant. This results indicated that nano-Fe₂O₃ and nano-Fe₃O₄ acted as noncompetitive inhibitors. In the presence of nano-SiO₂ the amount of K_m increased but V_{max} decreased, that showed nano-SiO₂ acted as a mixed inhibitor. The dissociation constant (K_i) value for binding nano-Fe₂O₃, nano-Fe₃O₄ to proteinase K was equal to 11µM and 8.5µM respectively that indicated the binding of nano-Fe₃O₄ to the enzyme was stronger than nano-Fe₂O₃. The K_1 and K_i value for nano-SiO₂ was 22.5µM and 8µM respectively.

Keywords: Proteinase-K, Nanoparticles, Experimental investigation

1. INTRODUCTION

Serine proteases are present in virtually all organisms and can be extracellular or intracellular enzymes. These proteins exist as two families, the trypsin-like and the subtilisin-like families, that have been independently evolved with a common catalytic mechanism which has been widely investigated [1]. Both families play an important role in all the organisms through functioning digestion, in coagulation, blood, posttranslational processing of secreted proteins. neurotransmitters and hormones [2]. The functional importance of catalytic triad and oxyanion hole in catalysis has been clearly established [3, 4]. In this mechanism, Ser functions as the primary nucleophile and His plays a dual role as proton acceptor and donor at different steps in the reaction.

The proposed role of aspartate in this mechanism is to bring histidine into the correct orientation to facilitate the nucleophilic attack by Serine. Though, the overall folding of various serine proteases may differ and they all follow the same mechanism of action by an identical stereochemistry of the catalytic triad [5].

Proteases are enzymes that catalyze the hydrolysis of peptide bonds.

The 279-residue serine protease, Proteinase K EC (3.4.21.14) from the fungus *Tritirachium album limber* belongs to the subtilisin family of enzymes [5, 6]. This family of enzymes has attracted intensive research interest from the industrial, academic, and agricultural communities. The academic interest is inspired by the ready amenability of subtilases to functional and structural investigation [7],

and by applications of proteinase K in biotechnology research such as the removal of DNases and RNases when isolating RNA and DNA from tissues or cell lines [6,8].

The agricultural and industrial applications of these enzymes include bio-control agents against parasites [9] and proteindegrading components in washing powders [10] respectively. Many of the properties of these enzymes involved in the catalysis, structure, stability to inactivation and substrate specificity and pH profile have been probed in detail by biochemical, protein-engineering, and structural studies [7, 9 and 11]. The native proteinase K contains two Ca²⁺ cations, which are considered to enhance the thermal stability of the enzyme and increase its resistance to proteolysis [12, 13, and 14].

The nanomaterials level is the most advanced at present, both in commercial applications and in scientific knowledge. A decade ago, nanoparticles were studied because of their size-dependent physical properties and chemical [15]. Nanotechnologies have already been used in a lot of products across various industries such as healthcare, electronics, materials. chemicals. cosmetics. and energy [16].

Metal oxide nanoparticles, particularly the oxides of transition metals, are of interest because of their unique properties in medicine, biology, equipment, sporting, cosmetics, electronics, magnetic storage media, solar energy transformation, and other industries [13-.15].

Recently, magnetic nanoparticles have many uses, for example, in magnetic resonance imaging (MRI), a temperature increase of tumor therapy, cell labeling and sorting, DNA separation and drug delivery, etc. are used [17]. Anyway, some of studies are related to the effects of magnetic nanoparticles on amyloid aggregation of proteins. We showed that nanoparticles can magnetic attach selectively to the insulin fibrils leading to specific magnetization of fibrils, causing

extraction of fibril/nanoparticle assemblies from the aqueous phase by a magnetic field [17, 18]. Iron oxide nanoparticles are mostly used in the magnetic material for high biocampability, strong paramagnetic properties, easy preparation and low toxicity [19].

Cationic proteins via domains positively charged from proteins located on the surface of silica nanoparticles (SiO₂) are connected. Changes in pH and ionic strength on the environment by controlling the intermediate layer leads to changes in protein tends to bind to the nanoparticles [20]. It is believed that immobilization of various enzymes onto nanoparticles will result in an accurate and much faster assay. immobilization Enzvme occurs bv adsorption, however; maybe result showed loss partial of enzymatic activity. It is important, therefore, to characterize the unfolding of enzymes/proteins at surfaces in order to arrive at rational methodology for the development of nanoparticles-based sensors and protein microarrays [21]. Previous studies on the effect of nano- Fe_2O_3 , nano- Fe_3O_4 [22] and nano- SiO_2 [23] on enzyme activity indicate their inhibitory effects. The aimed of this study was to investigate the effects of iron oxide nanoparticles (Fe₃O₄ and Fe₂O₃) and SiO₂ nanoparticle, on the kinetic activity of proteinase K.

2. MATERIALS AND METHODS 2.1. Instruments and Materials

Kinetics studies have been performed using UV-Vis spectrophotometer model pharmacia_4000 equipped with electronic control. Freeze-dried Proteinase K from *Tritirachum album Limber* was purchased from Sigma Chemical Co. USA that was dissolved in sodium phosphate buffer $(25 \times 10^3 \mu M, pH 7.0)$ and stored at less than 40 °C. para nitro phenyl acetate (pNA) (purchased from Sigma), which was used as Proteinase K substrate, was dissolved in deionized water. All of nanoparticles were suspended in deionized water and mixed ultrasonically for 3 times in 10 min before use.

2.2. Standard Proteinase K Activity Assay

In this assay mixture contained 40 μ g/ml of enzyme, different substrate concentrations and phosphate buffer (pH 7.0) .The enzyme activity was determined by measuring the concentration of product released. ρ NA was used for substrate and amount of product were recorded at 425 nm[24]. In this study two important parameters, K_m and V_{max}, were calculated for analysis of activity of proteinase K.

2.3. Kinetics study of Proteinase K in the Presence and Absence of Nanoparticles

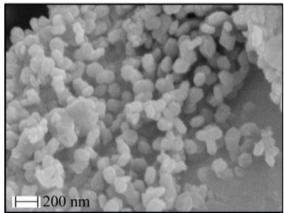
The activity of Proteinase K was monitored by UV-Visible spectrophotometer at 425 nm at pH 7.0 and 40°C in the absence and presence of different amount of nanoparticles. All studies were carried out in quartz cells containing $40\mu g/ml$ proteinase K and different concentration (2.5, 5 and $10\mu M$ for Fe nanoparticles and 2, 4 and 8 μM for SiO₂ nanoparticles) nanoparticles suspension.

2.4. Calculated K_i or Inhibitory Constant

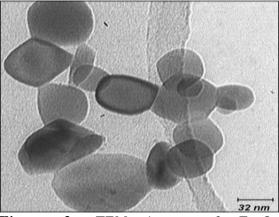
 K_i or inhibition constant calculated by secondary plots. In noncompetitive inhibition K_i measurement by drawing 1/V max(V_{max} in presence of inhibitor) vs.[I], where is:

$$1/V_{max} = 1/V_{max} + [I_0]/V_{max}K_i$$
 (1)

In mixed inhibitor that:


E+I≓ EI	$K_i = [E][I]/[EI]$	(2)
ES+I ≓ ESI	K_{I} = [ES][I]/[ESI]	(3)

 K_I measurement by drawing $1/V_{max}$ (V_{max} in presence of inhibitor) vs.[I] and K_i measurement by drawing K_m/V_{max} vs.[I]. Where is:


3. RESULTS

3.1. Determination of Particle Size of Nano-Fe₂O₃, Nano-Fe₃O₄, Nano-SiO₂

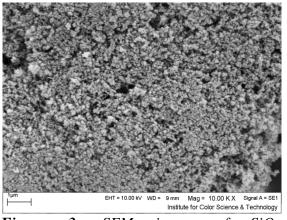
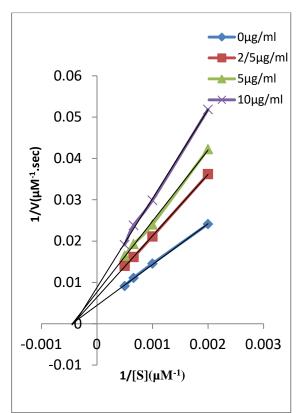

Fig.1 and Fig.2 show the SEM and TEM picture of nano-Fe₂O₃, respectively. From SEM measurement we observed that nano-Fe₂O₃ particles have flower in shape and the average particle diameter is about 30 nm. The average particle diameter of nano-Fe₃O₄ was about 45 nm. Figure 3 shows the SEM picture of nano-SiO₂. In shape the average particle diameter was about 11 nm.

Figure 1. SEM image of Fe_2O_3 nanoparticles.

Figure 2. TEM image of Fe_2O_3 nanoparticles.


Figure 3. SEM image of SiO_2 nanoparticles.

3.2. Kinetics Study of Proteinase K in the Presence of Nano-Fe₂O₃, Nano-Fe₃O₄, and Nano-SiO₂

The best way to analyze enzyme kinetic data is to fit the data directly to the Michaelis-Menten equation using nonlinear regression. Before nonlinear regression was available, investigators had to transform curved data into straight lines they could analyze with so linear regression. One way to do this is with a Lineweaver-Burk plot. Para nitro phenyl acetate (pNA) was used for substrate and amount of product were recorded at 425 In this work two important nm [25]. parameter, K_m and V_{max} , were calculated for analysis of activity of proteinase K. Km is an estimate of the equilibrium constant for substrate binding to enzyme. Result showed Proteinase K had better activity on 40°C and in $3 \times 10^3 \mu$ M of substrate enzyme arrived to V_{max}.

In Fig.4 effect of different concentration of nano-Fe₂O₃ was shown. As see in this figure, in presence of nano-Fe₂O₃, V_{max} was decreased and K_m was constant that indicated inhibition of enzyme by non-competitive mechanism. Kinetics data are tabulated on table 1.

In Fig.5, the secondary plot of enzyme in different concentration of nano-Fe₂O₃ is shown. As the intersection point of secondary plot of $1/V_{max}$ vs.[I] and y axis is K_i, The K_i value in fig 6 is equal to 11μ M.

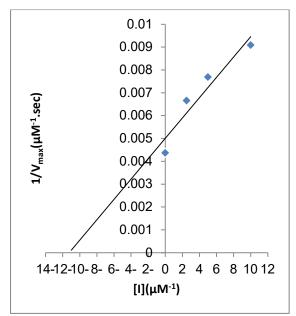
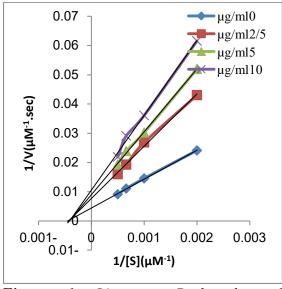

Figure 4. Lineweaver-Burk plot of proteinase K at various nano- Fe_2O_3 concentrations at 40°C and pH 7.0

Table 1. Kinetic parameter of V_{max} and K_m at various nano- Fe_2O_3 concentrations at $40^{\circ}C$ and pH 7.0


[Fe ₂ O ₃] µg/ml	V _{max} (µM.sec ⁻¹)	K _m (µM)	V_{max}/K_m ($\mu g^1.s^1$)*10 ³
0	230	2300	0.1
2.5	150	2300	0.06
5	130	2300	0.05
10	110	2300	0.04

In the next part, activity of enzyme was measured in the presence of nano-Fe₃O₄. Condition of experiment was same with experiment in previous section. As shown in Fig.6. in presence of nano-Fe₃O₄, V_{max} was decreased and K_m was constant that indicate non-competitive mechanism. Kinetics data are tabulated on table 2.

The secondary plots of enzyme in different concentration of nano-Fe₃O₄ is shown in Fig.7.The K_i in this case is equal to 8.5μ M.

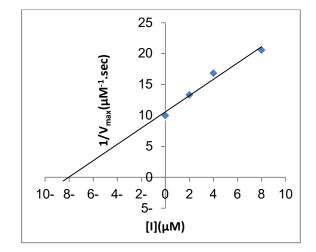
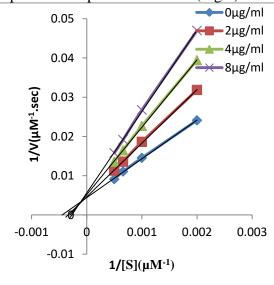

Figure 5. Secondary plot of proteinase K at various nano- Fe_2O_3 concentrations at 40°C and pH 7.0

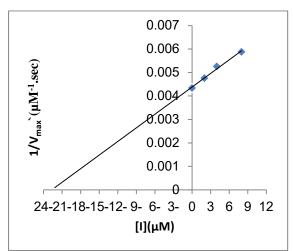
Figure 6. Lineweaver-Burk plot of proteinase K at various nano-Fe₃O₄ concentrations at 40 °C and pH 7.0


Table 2. Kinetic parameter of V_{max} and K_m at various nano- Fe_3O_4 concentrations at

40°C and pH 7.0						
[Fe ₃ O ₄] µg/ml	V_{max} (μ M.sec ⁻¹)	K _m (µM)	$\frac{V_{max}/K_m}{(\mu g^1.s^1)^{\star}10^3}$			
0	230	2300	0.1			
2.5	130	2300	0.05			
5	110	2300	0.04			
10	90	2300	0.03			

Figure 7. Secondary plot of proteinase K at various nano- Fe_3O_4 concentrations at 40°C and pH 7.0

In the other part of work, activity of enzyme was measured of nano-SiO₂. Condition of experiment was same with experiment in previous section (Fig.8).


Figure 8. Lineweaver-Burk plot of proteinase K at various nano-SiO₂ concentrations at 40° C and pH 7.0

As it could be seen in the presence of nano-SiO₂ amount of K_m increased and V_{max} decreased that show inhibitory mechanism of nano-SiO₂ was mixed-inhibition. Kinetics data are tabulated on Table 3. In this type of inhibition K_I and K_i are different and determined respectively by $1/V_{max}$ 'vs.[I] and K_m/V_{max} 'vs.[I].

V_{max} (μ M.sec ⁻¹)	K _m (µM)	$\frac{V_{max}/K_m}{(\mu g^1.s^1)^{\times}10^3}$
230	2300	0.1
210	2800	0.07
190	3200	0.05
170	3500	0.04
	(μM.sec ⁻¹) 230 210 190	$(\mu M.sec^{-1})$ (μM) 230230021028001903200

Table 3. Kinetic parameter of V_{max} and K_m at various nano- SiO₂ concentrations at 40°C and pH 7.0

In Figs. 9 and 10, the secondary plots of enzyme in different concentration of nano-SiO₂ are shown. The corresponding values for K_I and K_i are 22.5 and 8µM respectively.

Figure 9. Secondary plot $(1/V_{max}'vs.[I])$ of proteinase K at various nano-SiO₂ concentrations at 40°C and pH 7.0

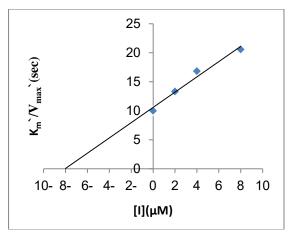


Figure 10. Secondary plot $(K_m/V_{max} vs.[I])$ of proteinase K at various nano-SiO₂ concentrations at 40°C and pH 7.0

4. DISCUSSION

In this study, the effect of iron oxide (Fe₃O₄ and Fe₂O₃) and SiO₂ nanoparticles on the kinetic activity of proteinase K was investigated. The results showed a reduced activity in the presence of different concentrations of nanoparticles that could be due to enzyme binding. Furthermore, the change in the structure of the enzyme had been found resulting in a decrease in enzyme activity [26]. Proteinase K had hydrogen net in their active site, that it was very important for enzyme activity [27]. In this paper we showed all of nanoparticles had inhibitory effects on enzyme activity, which could be a result of disturbed hydrogen net in proteinase K active site.

The experimental results showed that with increase concentration of nanoparticles the enzyme activity decreased. In presence of nano-Fe₂O₃ and nano-Fe₃O₄ V_{max} parameter decreased while K_m is constant, thus it indicated noncompetitive inhibitor [28].

It could be concluded from the result that nano-Fe₃O₄ had more inhibitory effect on enzyme activity and decreased V_{max}. K_i indication was an of EI complex dissociation constant that for nano-Fe₃O₄ was lower compared to nano-Fe₂O₃ and showed more inhibitory effect. Probably reason for this result was bigger size of Fe_3O_4 than Fe_2O_3 . It should we noted that pI for proteinase K and Fe nanoparticles is 8.3 and 5.1 respectively [29]. Thus at pH 7.0 the enzyme has positive charge and Fe nanoparticles have negative charge. So that bounding between them could probably result in a change in structure and activity of the enzyme.

The inhibitory effects of nano-SiO₂ on Proteinase K activity has been shown in this study. Nano-SiO₂ change K_m and V_{max} of enzyme altogether, where V_{max} decreases and K_m increases that this change point to mixed inhibitory that:

 $K_{m'} = K_m \left((1 + I_0 / K_I) / (1 + I_0 / K_I) \right)$ (6)

$$V_{max'} = V_{max} / (1 + I_0 / K_I)$$
 (7)

Furthermore, regarding enzyme secondary plot in presence of nano-SiO₂ that indicated K_I (ESI complex dissociation constant) is bigger than K_i (EI complex dissociation constant) [25, 28]. As a result inhibitory pattern is between competitive noncompetitive inhibition. and The inhibitory effect of nano-SiO₂ could be because of bond formation between nano-SiO₂ and enzyme. Nano-SiO₂ has pI=4.3 and it has been negative charge in pH 7.0, where it can bond with enzyme and change its structure. Conformational changes of protein may result in the changes in biological activity. The binding of nanoparticles may change the microenvironment of the catalytic triad Asp39-His69-Ser224 for the intruding molecule in the vicinity of them from the over-all Consequently, perspective. it may influence the enzyme activity.

5. CONCLUSION

The purpose of the current study was to determine change in the activity of proteinase K in the presence of Fe₃O₄, Fe₂O₃ and SiO₂ nanoparticles. To authors' information, few investigations have been performed on the proteinase K enzyme activity in presence of nanoparticles. As it could be seen in the results section, nano- Fe_2O_3 and nano- Fe_3O_4 had noncompetetive inhibitory effect on activity of Proteinase K, while nano-SiO₂ had mixed inhibitory effects. Further studies should be performed in order to investigate the effect of such nanoparticles on the activity of enzyme at different pHs, Temperatures and substrates.

REFERENCE

- 1. Lange, G., Betzel, Ch., Branner, S., Wilson, K. S. (1994). "Crystallographic Studies of Savinase, a Subtilisinlike Proteinase, at pH 10.5", *Eur. J. Biochem*, 224: 507-518.
- 2. Neurath, H. (1986). "The versatility of proteolytic enzymes", J. Cell. Biochem, 32: 35-49.
- 3. Russel, A. J., Fersht, A. R. (1987). "Rational modification of enzyme catalysis by engineering surface charge", *Nature*, 328: 496-500.
- 4. Carter, P., Wells, J. A. (1988). "Dissecting the catalytic triad of a serine protease", Nature, 332: 564-568.
- 5. Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. U., and Lang, H. (1974). "Proteinase K from Tritirachium album limber", *Eur. J. Biochem*, 47: 91-97.
- 6. Wiegers, U., Hilz, H. (1971). "A new method using 'proteinase K' to prevent mRNA degradation during isolation from HeLa cells", *Biochem Biophys Res Commun*, 44: 513–519.
- 7. Wells, J A., Estell, DA. (1988). "Subtilisin an enzyme designed to be engineered", *Trends Biochem Sci*, 13: 291–297.
- Hilz, H., Wiegers, U., Adamietz, P. (1975). "Stimulation of proteinase K action by denaturing agents: application to the isolation of nucleic acids and the degradation of maskedproteins", *Eur J Biochem*, 56: 103–108.
- 9. Shaw, WV. (1987). "Protein engineering: The design, synthesis and characterization of factitious proteins", *Biochem J*, 246: 1–17.
- 10. Liu, SQ., Meng, ZH., Yang, JK., Fu, YX., Zhang, KQ. (2007). "Characterizing structural features of cuticledegrading proteases from fungi by molecular modeling", *BM Struct Biol*, 7: 33.
- 11. Martin, JR., Mulder, FAA., Karimi-Nejad, Y., Van der Zwan, J., Mariani, M., Schipper, D., Boelens, R. (1997). "The solution structure of serine protease PB92 from *Bacillus alcalophilus* presents a rigid fold with a flexible substrate-binding site", *Structure*, 5: 521–532.
- 12. Müller, A., Hinrichs, W., Wolf, WM., Saenger, W. (1994). "Crystal structure of calcium-free proteinase K at 1.5-A resolution", *J Biol Chem*, 269: 23108–23111.
- 13. Betzel, C., Pal, GP., Saenger, W. (1988). "Three-dimensional structure of proteinase K at 0.15-nm resolution", *Eur J Biochem*, 178: 155–171.
- 14. Betzel, C., Teplyakov ,AV., Harutyunyan, EH., Saenger, W., Wilson, KS. (1990). "Thermitase and proteinase K: a comparison of the refined three-dimensional structures of the native enzymes", *Protein Eng*, 3: 161–172.
- 15. Murray, C.B., Kagan, C.R, et al. (2000). "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblie", *Annual Review of Materials Science*, 30: 545-610.
- 16. Morose, G. (2010). "The 5 principles of "Design for Safer Nanotechnology"", Journal of Cleaner Production, 18: 285-289.

- Bellova, A., Bystrenova, E., Koneracka, M., Kopcansky, P., Valle, F., Tomasovicova, N., Timko, M., Bagelova, J., Biscarini, F., Gazova, Z. (2010). "Effect of Fe₃O₄ magnetic nanoparticles on lysozyme amyloid aggregation", *Nanotechnology*, 21: 065103.
- 18. Skaat, H., Margel, S. (2009). "Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils detection and removal by a magnetic field", *Biochem, Biophys, Res Commun*, 386: 645-49.
- Zhang, R., Song, M., Li, X., Guan, Z and Wang, X. (2006). "In situ electrochemical contact angle study of hemoglobin and hemoglobin-Fe₃O₄ nanocomposites", *Analytical and bioanalytical chemistry*, 386: 2075-2207.
- 20. Wang, Y., Wang, B., Zhu, M-T., LI, M., Wang, H.-J., Wang, M., Ouyang, H., Chai, Z.-F., Feng, W.-Y. & Zhao, Y.-L. (2011). "Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. exposure", *Toxicology letters*, 205: 26-37.
- 21. Wu, X., Narsimhan, G. (2008). "Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles", *Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics*, 1784: 1694-1701.
- 22. Sadeghi kaji, S., Shareghi, B., Salavati, M. (2014). "Urease Activity Protection with EDTA against Nanoparticles (Fe₂O₃ and Fe₃O₄) Inactivation", *Journal of Nanostructures*, 4:217-226.
- 23. Shareghi, B., Hashemian, A., Farhadian, S., Salavati-Niasari, M., Saffar, B., Moshtaghi, H. (2013). "Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano-TiO₂ and Nano-SiO₂ in Neutral pH", *JNS*, 3: 281-288.
- 24. Shu-Qun, L., Zhao-Hui, M., et al. (2010). "Insights derived from molecular dynamics simulation into the molecular motions of serine protease proteinase K", *J Mol Model*, 16: 17-28.
- 25. Palmer, T. (2001). "Enzymes: biochemistry, biotechnology and clinical chemistry", *Horwood Publishing Limited*, 98-134.
- 26. Shareghi, B., Farhadian, S., Zamani, N., Salavati-Niasari, M., Moshtaghi, H., Gholamrezaei, S. (2015). "Investigation the activity and stability of lysozyme on presence of magnetic nanoparticles", *Journal of Industrial and Engineering Chemistry*, 21: 862-867.
- 27. Betzel, C., Gourinath, S., Kumar, P., Kaur, P., Perbandt, M., Eschenburg, S. (2001). "Structure of a serine protease proteinase K from Tritirachium album limber at 0.98resolution", *Biochemistry*, 40: 3080-3088.
- 28. Segel Irwin, H. (1993). "Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems", Wily-Interscience.
- 29. Kraus, E., Kiltz, HH., Femfert, UF., Hoppe-Seyler's, Z. (1976). "The specificity of proteinase K against oxidized insulin B chain", *Physiol, Chem*, 357: 233-237.
- 30. Khayat Sarkar, Z., Khayat Sarkar, F. (2011). "Synthesis and Magnetic Properties Investigations of Fe₃O₄ Nanoparticles", *Int. J. Nanosci. Nanotechnol*, 7: 197-200.
- 31. Nadafan, M., Malekfar, R., Dehghani, Z. (2015). "Investigation in to Properties of Polyurethane Closed Cell by High Loading of SiO₂ Nanoparticles", *Int. J. Nanosci. Nanotechnol*, 11: 185-192.
- 32. Dahmardeh, A., Davarpanah, A M. (2015). "Investigation on Influences of Synthesis Methods on the Magnetic roperties of Trimetallic Nanoparticles of Iron -Cobalt-Manganese Supported by Magnesium Oxide", Int. J. Nanosci. Nanotechnol, 11: 249-256.