• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
International Journal of Nanoscience and Nanotechnology
Articles in Press
Current Issue
Journal Archive
Volume Volume 14 (2018)
Volume Volume 13 (2017)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 12 (2016)
Volume Volume 11 (2015)
Volume Volume 10 (2014)
Volume Volume 9 (2013)
Volume Volume 8 (2012)
Volume Volume 7 (2011)
Volume Volume 6 (2010)
Volume Volume 5 (2009)
Volume Volume 4 (2008)
Volume Volume 3 (2007)
Yadollahi, E., Shareghi, B., Salavati, M. (2017). Comparative Studies on the Interaction of ‎Proteinase-K with Fe2O3, Fe3O4 and SiO2 ‎Nanoparticles. International Journal of Nanoscience and Nanotechnology, 13(2), 187-194.
E. Yadollahi; B. Shareghi; M. Salavati. "Comparative Studies on the Interaction of ‎Proteinase-K with Fe2O3, Fe3O4 and SiO2 ‎Nanoparticles". International Journal of Nanoscience and Nanotechnology, 13, 2, 2017, 187-194.
Yadollahi, E., Shareghi, B., Salavati, M. (2017). 'Comparative Studies on the Interaction of ‎Proteinase-K with Fe2O3, Fe3O4 and SiO2 ‎Nanoparticles', International Journal of Nanoscience and Nanotechnology, 13(2), pp. 187-194.
Yadollahi, E., Shareghi, B., Salavati, M. Comparative Studies on the Interaction of ‎Proteinase-K with Fe2O3, Fe3O4 and SiO2 ‎Nanoparticles. International Journal of Nanoscience and Nanotechnology, 2017; 13(2): 187-194.

Comparative Studies on the Interaction of ‎Proteinase-K with Fe2O3, Fe3O4 and SiO2 ‎Nanoparticles

Article 10, Volume 13, Issue 2, Spring 2017, Page 187-194  XML PDF (949 K)
Document Type: Research Paper
Authors
E. Yadollahi1; B. Shareghi 1; M. Salavati2
1Department of Biology, University of Shahrekord, P.O. Box: 115, Shahrekord, I. R. of ‎Iran.‎
2Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-‎‎51167, Kashan, I. R. Iran.‎
Abstract
   The interaction of Fe2O3, Fe3O4 and SiO2 nanoparticles with proteinase K activity was investigated using UV–vis spectroscopy. Proteinase K EC (3.4.21.14) is a member of serine protease family, which is produced from fungus Tritirachum album Limber.The effects of nanoparticles on proteinase K activity were studies at 40˚C in pH 7.0 using sodium phosphate as buffer. It was found that in the presence of nano-Fe2O3 and nano-Fe3O4, Vmax was decreased but Km was constant. This results indicated that nano-Fe2O3 and nano-Fe3O4 acted as noncompetitive inhibitors. In the presence of nano-SiO2 the amount of Km increased but Vmax decreased, that showed nano-SiO2 acted as a mixed inhibitor. The dissociation constant (Ki) value for binding nano-Fe2O3, nano-Fe3O4 to proteinase K was equal to 11µM and 8.5µM respectively that indicated the binding of nano-Fe3O4 to the enzyme was stronger than nano-Fe2O3. The KI and Ki value for nano-SiO2 was 22.5µM and 8µM respectively.
Keywords
Proteinase-K; Nanoparticles; Experimental investigation‎
References
  1. Lange, G., Betzel, Ch., Branner, S., Wilson, K. S. (1994). “Crystallographic Studies of Savinase, a Subtilisin-like Proteinase, at pH 10.5”, Eur. J. Biochem, 224: 507-518.
  2. Neurath, H. (1986). “The versatility of proteolytic enzymes”, J. Cell. Biochem, 32: 35-49.
  3. Russel, A. J., Fersht, A. R. (1987). “Rational modification of enzyme catalysis by engineering surface charge”, Nature, 328: 496-500.
  4. Carter, P., Wells, J. A. (1988). “Dissecting the catalytic triad of a serine protease”, Nature, 332: 564-568.
  5. Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. U., and Lang, H. (1974). “Proteinase K from Tritirachium album limber”, Eur. J. Biochem, 47: 91-97.
  6. Wiegers, U., Hilz, H. (1971). “A new method using ‘proteinase K’ to prevent mRNA degradation during isolation from HeLa cells”, Biochem Biophys Res Commun, 44: 513–519.
  7. Wells, J A., Estell, DA. (1988). “Subtilisin — an enzyme designed to be engineered”, Trends Biochem Sci, 13: 291–297.
  8. Hilz, H., Wiegers, U., Adamietz, P. (1975). “Stimulation of proteinase K action by denaturing agents: application to the isolation of nucleic acids and the degradation of maskedproteins”, Eur J Biochem, 56: 103–108.
  9. Shaw, WV. (1987). “Protein engineering: The design, synthesis and characterization of factitious proteins”, Biochem J, 246: 1–17.
10. Liu, SQ., Meng, ZH., Yang, JK., Fu, YX., Zhang, KQ. (2007). “Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling”, BM Struct Biol, 7: 33.

11. Martin, JR., Mulder, FAA., Karimi-Nejad, Y., Van der Zwan, J., Mariani, M., Schipper, D., Boelens, R. (1997). “The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site”, Structure, 5: 521–532.

12. Müller, A., Hinrichs, W., Wolf, WM., Saenger, W. (1994). “Crystal structure of calcium-free proteinase K at 1.5-A resolution”, J Biol Chem, 269: 23108–23111.

13. Betzel, C., Pal, GP., Saenger, W. (1988). “Three-dimensional structure of proteinase K at 0.15-nm resolution”, Eur J Biochem, 178: 155–171.

14. Betzel, C., Teplyakov ,AV., Harutyunyan, EH., Saenger, W., Wilson, KS. (1990). “Thermitase and proteinase K: a comparison of the refined three-dimensional structures of the native enzymes”, Protein Eng, 3: 161–172.

15. Murray,C.B., Kagan, C.R, et al. (2000). “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblie”, Annual Review of Materials Science, 30: 545-610.

16. Morose, G. (2010). “The 5 principles of “Design for Safer Nanotechnology””, Journal of Cleaner Production, 18: 285-289.

17. Bellova, A., Bystrenova, E., Koneracka, M., Kopcansky, P.,Valle, F., Tomasovicova, N., Timko, M., Bagelova, J., Biscarini, F., Gazova, Z. (2010). “Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation”, Nanotechnology, 21: 065103.

18. Skaat, H., Margel, S. (2009). “Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils detection and removal by a magnetic field”, Biochem, Biophys, Res Commun, 386: 645-49.

19. Zhang, R., Song, M., Li, X., Guan, Z and Wang, X. (2006). “In situ electrochemical contact angle study of hemoglobin and hemoglobin-Fe3O4 nanocomposites”, Analytical and bioanalytical chemistry, 386: 2075-2207.

20. Wang, Y., Wang, B., Zhu, M-T., LI, M., Wang, H.-J., Wang, M., Ouyang, H., Chai, Z.-F., Feng, W.-Y. & Zhao, Y.-L. (2011). “Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. exposure”, Toxicology letters, 205: 26-37.

21. Wu, X., Narsimhan, G. (2008). “Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles”, Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1784: 1694-1701.

22. Sadeghi kaji, S., Shareghi, B., Salavati, M. (2014). “Urease Activity Protection with EDTA against Nanoparticles (Fe2O3 and Fe3O4) Inactivation”, Journal of Nanostructures, 4:217-226.

23. Shareghi, B., Hashemian, A., Farhadian, S., Salavati-Niasari, M., Saffar, B., Moshtaghi, H. (2013). “Thermal Inactivation and Aggregation of Lysozyme in the Presence of Nano-TiO2 and Nano-SiO2 in Neutral pH”, JNS, 3: 281-288.

24. Shu-Qun, L., Zhao-Hui, M., et al. (2010). “Insights derived from molecular dynamics simulation into the molecular motions of serine protease proteinase K”, J Mol Model, 16: 17-28.

25. Palmer, T. (2001). “Enzymes: biochemistry, biotechnology and clinical chemistry”, Horwood Publishing Limited, 98-134.

26. Shareghi, B., Farhadian, S., Zamani, N., Salavati-Niasari, M., Moshtaghi, H., Gholamrezaei, S. (2015). “Investigation the activity and stability of lysozyme on presence of magnetic nanoparticles”, Journal of Industrial and Engineering Chemistry, 21: 862-867.

27. Betzel, C., Gourinath, S., Kumar, P., Kaur, P., Perbandt, M., Eschenburg, S. (2001). “Structure of a serine protease proteinase K from Tritirachium album limber at 0.98resolution”, Biochemistry, 40: 3080-3088.

28. Segel Irwin, H. (1993). “Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems”, Wily-Interscience.

29. Kraus, E., Kiltz, HH., Femfert, UF., Hoppe-Seyler’s, Z. (1976). “The specificity of proteinase K against oxidized insulin B chain”, Physiol, Chem, 357: 233-237.

30. Khayat Sarkar, Z., Khayat Sarkar, F. (2011). “Synthesis and Magnetic Properties Iinvestigations of Fe3O4 Nanoparticles”, Int. J. Nanosci. Nanotechnol, 7: 197-200.

31. Nadafan, M., Malekfar, R., Dehghani, Z. (2015). “Investigation in to Properties of Polyurethane Closed Cell by High Loading of SiO2 Nanoparticles”, Int. J. Nanosci. Nanotechnol, 11: 185-192.

32. Dahmardeh, A., Davarpanah, A M. (2015). “Investigation on Influences of Synthesis Methods on the Magnetic roperties of Trimetallic Nanoparticles of Iron -Cobalt-Manganese Supported by Magnesium Oxide”, Int. J. Nanosci. Nanotechnol, 11: 249-256.

Statistics
Article View: 474
PDF Download: 582
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Creative Commons
International Journal of Nanoscience and Nanotechnology is licensed under a
"Creative Commons Attribution 4.0 International (CC-BY 4.0)"

 

Journal Management System. Designed by sinaweb.