Novel Synthesis of Manganese Spinel ‎Nanoparticles via Combustion with ‎MnIII(acac)3 as Precursor ‎

Document Type: Research Paper


Department of Chemistry, Faculty of‏ ‏Sciences, Semnan University, Semnan, I. R. Iran.‎


   In the present work Mn3O4 nanoparticles (NPs) with spinel structure were synthesized successfully via combustion route with MnIII(acac)3 as precursor in two different temperatures. The morphology of the synthesized Mn3O4 were investigated by field emission scanning electron microscope (FESEM) and structural analysis was studied by powder X-ray diffraction (PXRD) technique that it indicated that the Mn3O4 nanoparticles with space group of l41/amd Structural analysis was performed by fullprof program employing profile matching with constant scale factors. The lattice parameters for both samples were found a = b = 5.7621 Å and c= 9.4696 Å, α = β = γ = 90°. In addition, the size of the Mn3O4 nanoparticles obtained from the Transmission Electron Microscopy (TEM) that the average is 20 nm. Magnetic property of synthesized Mn3O4 was done by Vibration Sampling Magnetometer (VSM) that confirm the paramagnetic behavior. The optical properties of the obtained materials were investigated by Furrier-Transform Infrared spectroscopy (FTIR) and Ultraviolet-Visible spectrum (UV-Vis). The thermal stability was determined by Thermo Gravimetric Analysis (TGA).


  1. Ozkaya T., Baykal A., Kavas H., Koseglu Y., Topark M. S. (2008). “A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation”, Physica B., 403: 3760-3764.
  2. Santra S., Tapec R., Theodoropoulou N., Dobson J., Hebard A., Tan W. (2001). “Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion:  The Effect of Nonionic Surfactants”, Langmuir, 17: 2900-2906.
  3. Gibot P., Laffont L., (2007). “Hydrophilic and hydrophobic nano-sized Mn3O4 particles”, J. Solid State Chem., 180: 695-701.
  4. Han Y. F., Chen F., Zhong Z., Ramesh K., Chen L., Widjaja E., (2006). “Controlled Synthesis, Characterization, and Catalytic Properties of Mn2O3and Mn3O4 Nanoparticles Supported on Mesoporous Silica SBA-15”, The Journal of Physical Chemistry, 110: 24450-24456.
  5. Tian Z. R., Tong W., Wang J. Y., Duan N. G., Krishnan V. V., Suib S. L., (1997). “Manganese Oxide Mesoporous Structures: Mixed-Valent Semiconducting Catalysts”, Science, 276: 926-930.
  6. Marbán G., Solís T. V., Fuertes A. B., (2004). “Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4: Role of surface NH3 species: SCR mechanism”, J. Catal. 226: 138-155.
  7. Yamashita T., Vannice A., (1997). “Temperature-programmed desorption of NO adsorbed on Mn2O3 and Mn3O4Appl. Catal. B: Environ., 13: 141-155.
  8. Salari D., Niaei A., Hosseini S. A., Aleshzadeh R., Afshary H. (2010). “Investigation of the Activity of Nano Structure Mn/γ-Al2O3 Catalyst for Combustion of 2-Propanol”, Int. J. Nanosci. Nanotechnol., 6: 23-30.
  9. Wang Y. J., Cheng L., Li F., Xiong H. M., Xia Y. Y., (2007). “High Electrocatalytic Performance of Mn3O4/Mesoporous Carbon Composite for Oxygen Reduction in Alkaline Solutions”, Chem. Mater., 19: 2095-2101.
  10. Oaki Y., Imai H., Angew. (2007). “One-Pot Synthesis of Manganese Oxide Nanosheets in Aqueous Solution: Chelation-Mediated Parallel Control of Reaction and Morphology”, Chem. Int. Ed., 46: 4951-4955.
  11. Salazar-Alvarez G., Sort J., Suriñach S., Baró M. D., Nogués J, (2007). “Synthesis and Size-Dependent Exchange Bias in Inverted Core−Shell MnO|Mn3ONanoparticles”, J. Am. Chem. Soc., 129: 9102-9108.
  12. Mohan G. R., Ravinder D., Ramana Reddy A. V., Boyanov B. S., (1999). “Dielectric properties of polycrystalline mixed nickel–zinc ferrites”, Materials Letters, 40: 39-45.
  13. Ovshinsky S. R., Fetcenko M. A., (1993). “A Nickel metal hydride battery for electric vehicles ”, Science, 260: 176-181.
  14. Sanchez L., Farcy J., Tirado J., (1996). “Low-temperature mixed spinel oxides as lithium insertion compounds”, J. Mater. Chem., 6: 37-39.
  15. Thackeray M. M., David V. I. F., Bruce P. G., (1983). “Lithium insertion into manganese spinels”, Mater. Res. Bull., 18: 461-472.
  16. Buckelew A., Galán-Mascarós J. R., Dunbar K. R., (2002). “Facile Conversion of the Face-Centered Cubic Prussian-Blue Material K2[Mn2(CN)6] into the Spinel Oxide Mn3O4 at the Solid/Water Interface”, Advanced Materials, 14: 1646-1648.
  17. Chang Y. Q., Xu X. Y., Luo X. H., Chen C. P., Yu D. P., (2004). “Synthesis and characterization of Mn3O4 nanoparticles”, J. Cryst. Growth, 264: 232-236.
  18. Dahmardeh A., Davarpanah A. M., (2015). “Investigation on Influences of Synthesis Methods on the Magnetic Properties of Trimetallic Nanoparticles of Iron-Cobalt-Manganese Supported by Magnesium Oxide ”, Int. J. Nanosci. Nanotechnol., 11: 249-256.
  19. Zhang Y. C., Qiao T., Hu X. Y., (2004). “Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires”, J. Solid State Chem., 177: 4093-4097.
  20. Apte S. K., Naik S. D., Sonawane R. S., Kale B. B., Pavaskar N., Mandale A. B., Das B. K., (2006). “Nanosize Mn3O4 (Hausmannite) by microwave irradiation method”, Mater. Res. Bull., 41: 647-654.
  21. Chen Z. W., Lai J. K. L., Shek C. H., (2006). “Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals”, Scr. Mater., 55: 735-738.
  22. Grootendorst E. J., Verbeek Y., Ponce V., (1995). “The Role of the Mars and Van Krevelen Mechanism in the Selective Oxidation of Nitrosobenzene and the Deoxygenation of Nitrobenzene on Oxidic Catalysts”, J. Catal., 157: 706-712.
  23. Baldi M., Finonnhio E., Milella F., Busca G., (1998). “Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4”, Appl. Catal. B: Environ., 16: 43-51.
  24. Ozkaya T, Baykal A., Kavas H., Köseoğlu Y., Toprak M. S., (2008). “A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation”, Physica B: Condensed Matter, 403: 3760-3764.