Iijima, S. (1991). “Helical Microtubes of Graphitetic Carbon”, Nature, 354: 56–58.
Moradi, O., Yari, M., Zare, K., Mirza, B., Najafi, F. (2012). “Carbon Nanotubes: A Review of Chemistry Principles and Reactions”, Fullerenes, Nanotubes and Carbon Nanostructures, 20: 138–151.
Charlier, J. C., Blase, X., Roche, S. (2007). “Electronic and Transport Properties of Nanotubes”, Rev. Mod. Phys., 79: 677-711.
Baughman, R. H., Zakhidov, A. A., de Heer. W. A. (2002). “Carbon Nanotubes - The Route toward Applications”, Science, 297: 787-792.
Hamada, N., Sawada, S. I., Oshiyama, A. (1992). “New One-Dimensional Conductors: Graphitic Microtubules”, Phys. Rev. Lett., 68: 1579-1581.
Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M. S. (1992). “Electronic Structure of Chiral Graphene Tubules”, Appl. Phys. Lett., 60: 2204-2206.
Odom, T. W., Huang, J. L., Kim, P., Lieber, C. M. (1998) "Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes”, Nature, 391:62-64.
Jishi, R. A., Bragin, J., Lou, L. (1999) “Electronic Structure of Short and Long Carbon Nanotubes from First Principles”, Phys. Rev. B, 59: 9862-9865.
Gulseren, O., Yildirim, T., Ciraci, S. (2002) “Systematic ab initio Study of Curvature Effects in Carbon Nanotubes”, Phys. Rev. Lett., 65:153405(1-4).
10. Dresselhaus, M. S., Dresselhaus G., Jorio, A. (2004) “Unusual Properties and Structure of Cnanotubes”, Annu. Rev. Matter. Res.,34:247–278.
11. Dresselhaus, M. S., Dresselhaus, G., Charlier, J. C., Hernandez, E. (2004) “Electronic, Thermal and Mechanical Properties of Carbon Nanotubes, in Nanotechnology of Carbon and Related Materials”, Philos. Trans. R. Soc. London, Ser. A, 362: 2065-2209.
12. Collins, P. G., Bradley, K., Ishigami, M., Zettl, A. (2000) “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes”, Science, 287: 1801-1804.
13. Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S.; Cho, K., Dai, H. (2000) “Nanotube Molecular Wires as Chemical Sensors”, Science, 287: 622-625.
14. Dag, S., Gulseren, O., Ciraci, S. (2003) “A Comparative Study of O2 Adsorbed Carbon Nanotubes”, Chem. Phys. Lett., 380: 1-5.
15. Lithoxoos, G. P., Labropoulos, A., Peristeras, L. D., Kanellopoulos, N., Samios, J., Economou I. G. (2010) “A Combined Experimental and Monte Carlo Molecular Simulation Study”, J. Supercrit. Fluid, 55: 510–523.
16. Rafati, A. A., Hashemianzadeh, S. M., Nojini, Z. B. (2009) “Effect of the Adsorption of Oxygen on Electronic Structures and Geometrical Parameters of Armchair Single-Wall Carbon Nanotubes: A Density Functional Study”, J. Colloid and Interface Sci., 336: 1–12.
17. Javid, A. H., Gorannevis, M., Moattar, F., Mashinchian Moradi, A., Saeeidi P. (2013) “Modeling of Benzene Adsorption in the Gas Phase on Single-Walled Carbon Nanotubes for Reducing Air Pollution”, Int. J. Nanosci. Nanotechnol., 9: 227-234.
18. Davoodi, J., Alizade, H., (2011) “Radius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array”, Int. J. Nanosci. Nanotechnol., 7: 143-146.
19. Hohenberg, P., Kohn, W. (1964), “Inhomogeneous Electron Gas”, Phys. Rev. B, 136: 864-871.
20. Kohn, W., Sham, L. J. (1965), “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. A, 140: 1133-1138.
21. Collins, P. G., Bradley, K., Ishigami, M., Zettl, A. (2000), “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes”, Science, 287: 1801-1804.
22. Zhou, Y., Sreekala, S., Ajayan, P. M., Nayak, S. K. (2008), “Resistance of Copper Nanowires and Comparison with Carbon nanotube Bundles for Interconnect Applications using First Principles Calculations”, J. Phys.: Condens. Matter, 20: 095209(1-5).
23. Fagan, S. B., Fazzio, A., Mota, R. (2006), “Titanium Monomers and Wires Adsorbed on Carbon Nanotubes: A First Principle Study”, Nanotechnology, 17: 1154-1159.
24. Yang, C. K., Zhao, J., Lu J. P. (2002) “Binding Energies and Electronic Structures of Adsorbed Titanium Chains on Carbon Nanotubes”, Phys. Rev. B, 66: 041403(1-4).
25. Yang, C. K., Zhao, J., Lu, J. P. (2004) “Complete Spin Polarization for A Carbon Nanotube with an Adsorbed Atomic Transition-Metal Chain”, Nano Lett., 4: 561-563.
26. Voggu, R., Pal, S., Pati, S. K., Rao, C. N. R. (2008) “Semiconductor to Metal Transition in SWNT Caused by Interaction with Gold and Platinum Nano Particles”, J. Phys.: Condens. Matter, 20: 215211(1-16).
27. Kim, Y. L., Li, B., An, X., Hahm, M. G., Chen, L., Washington, M., Ajayan, P. M., Nayak, S. K., Busnaina, A., Kar, S., Jung, Y. J. (2009) “Highly Aligned Scalable Platinum-Decorated Single-Wall Carbon Nanotube Arrays for Nanoscale Electrical Interconnects”, ACS Nano, 3: 2818-2826.
28. Dag, S., Durgun, E., Ciraci, S. (2004) “Nanotechnology-An Introduction for the Standards Community”, Phys. Rev. B, 69: 121407(1-4).
29. Han, S. S., Hyuck, M. L. (2004) “Adsorption Properties of Hydrogen on (10,0) Single-Walled Carbon Nanotube through Density Functional Theory”, Carbon, 42: 2169-2177.
30. Gates, B., Mayers, B., Cattle, B., Xia, Y. N. (2002), “Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium”, Adv. Funct. Mater. 12: 219–227.
31. Li, X., Li, Y., Li, S., Zhou, W., Chu, H., Chen, W., Li, I. L., Tang, Z. (2005) “Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process”, Cryst. Growth Des. 5: 911-916.
32. Zhang, X. Y., Xu, L. H., Dai, J. Y., Cai, Y., Wang, N. (2006) “Photoconductivity of Single-Crystalline Selenium Nanotubes”, Mater. Res. Bull. 41: 1729-1734.
33. Liu, P., Ma, Y., Cai, W., Wang, Z., Wang, J., Qi, L., Chen, D. (2007) “Photoconductivity of Single-Crystalline Selenium Nanotubes”, Nanotechnology, 18: 205704-205716.
34. Krishnan, S., Yilmaz, H., Vadapoo, R., Marin, C. (2010) “Selenium Adsorbed Single Wall Carbon Nanotubes as a Potential Candidate for Nanoscale Interconnects”, Appl. Phys. Lett. 97: 163107(1-3).
35. Bergoli, R., Mota, R, Zanella, I. ,da Silva, L. B. ,Fagan, S. B. (2011) “Selenium Nanostructures Adsorbed on Carbon Nanotubes: A DFT Investigation”, J. Comput. Theor. Nanosci. 8: 1710-1715.
36. Frey, J. T.; Doren, D. J. (2011) Tube Gen 3.4; University of Delaware, Newark, DE.
37. Beche A. D. (1993) “Density-Functional Thermochemistry. III. The Role of Exact Exchange”, J. Chem. Phys. 98: 5648-5652.
38. Lee, C. T., Yang, W. T., Parr, R. G. (1988) “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density”, Phys. Rev. B, 37: 785-789.
39. Hay, P. J., Wadt, W. R. (1985) “Ab initio Effective Core Potentials for Molecular Calculations. Potentials for Transition Metal Atoms Sc to Hg” J. Chem. Phys. 82: 270-283.
40. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K. Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, W., Morokuma, P. Y., Voth, K., Salvador, G. A., Dannenberg, P., Zakrzewski, J. J., Dapprich, V. G., Daniels, S., Strain, A. D., Farkas, M. C., Malick, O., Rabuck, D. K., Raghavachari, A. D., Foresman, K., Ortiz, J. B., Cui, J. V., Baboul, Q., Clifford, A. G., Cioslowski, S., Stefanov, J., Liu, B., Liashenko, B., Piskorz, G. A., Komaromi, P., Martin, I., Fox, R. L., Keith, D. J. T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. (2003) Gaussian 03, Revision B. 05, Gaussian, Inc., Pittsburg, PA.
41. Mpourmpakis, G., Tylianakis, E., Froudakis, G. E. (2007) “Carbon Nanoscrolls: A Promising Material for Hydrogen Storage”, Nano Lett., 7: 1893-1897.
42. Mpourmpakis, G., Froudakis, G. E. (2007) “Why Boron Nitride Nanotubes Are Preferable to Carbon Nanotubes for Hydrogen Storage? An ab initio Theoretical Study”, Catal. Today, 120: 341-345.
43. Baei, M. T., Soltani, A. R., Moradi, A. V., Lemeski, E. T. (2011) “Adsorption Properties of NO on (6, 0), (7, 0), and (8, 0) Zigzag Single-Walled Boron Nitride Nanotubes: A Computational Study”, Comput. Theor. Chem., 970: 30-35.
44. Chen, Z., Nagase, S., Hirsch, A. C., Haddon, R., Thiel, W., Schleyer P. von R. (2004) “Side-Wall Opening of Single-Walled Carbon Nanotubes (SWCNTs) by Chemical Modification: A Critical Theoretical Study”, Angew. Chem., 116: 1578-1580.
45. Bai, J., Zeng, X. C., Tanaka, H., Zeng, J. Y. (2004) “Metallic Single-Walled Silicon Nanotubes”, Proc. Natl. Ac. Sci., 101: 2664-2668.
46. Yeung, C. S., Chen, Y. K., Wang, Y. A. (2010) “Theoretical Studies of Substitutionally Doped Single-Walled Nanotubes”, J. Nanotechnol. 2010: 801789(1–42).
47. Chen, Y. K., Liu, L. V., Tian, W. Q., Wang, Y. A. (2011) “ Theoretical Studies of Transition–Metal–Doped Single–Walled Carbon Nanotubes”, J. Phys. Chem. C, 115: 9306–9311.
48. Abadir, G. B., Walus,K., Pulfrey, D. L. (2008) “Basis-Set Choice for DFT/NEGF Simulations of Carbon Nanotubes”, J. Comput. Electron. 8: 35-42.
49. Boys S. F., Bernardi, F. (1970) “The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors”, Mol. Phys. 19: 553-566.
50. Reed, A. E., Curtiss L. A., Weinhold, F. A. (1988) “"Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint", Chem. Rev., 88: 899–926.
51. Pinto, H., Markevich, A. (2014) “Electronic and Electrochemical Doping of Graphene by Surface Adsorbates”, Beilstein J. Nanotechnol., 5: 1842–1848.
52. Omidvar, A., Mohajeri A. (2015) “Promotional Effect of the Electron Donating Functional Groups on the Gas Sensing Properties of Graphene Nanofakes”, RAS Adv. 5: 54535-54543.