Surfactant Removal from Mesoporous Silica Shell of Core-Shell Magnetic Microspheres by Modified Supercritical CO₂

Z. Kheshti and Sh. Hassanajili*

Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7193616511, Iran

(*) Corresponding author: ajili@shirazu.ac.ir
(Received: 22 October 2015 and Accepted: 07 August 2016)

Abstract

In this paper, a kind of core–shell magnetic mesoporous microspheres of Fe₃O₄@SiO₂@meso-SiO₂ with high surface area was prepared, where magnetic Fe₃O₄ nanospheres were used as the inner core, tetraethyl orthosilicate (TEOS) as silica source, and cetyltrimethylammonium bromide (CTAB) as pore forming agent. Methanol-enhanced supercritical CO₂ extraction has been attempted on structurally order mesoporous shell to remove the cationic template of CTAB and the effects of operating conditions i.e. pressure and temperature on the extraction efficiency were investigated. The influence of the methanol-enhanced supercritical CO₂ on the structural properties of magnetic mesoporous silica nanocomposites was examined in detail by means of FE-SEM, FTIR, XRD, N₂ adsorption/desorption and VSM. The obtained results reflected that the methanol-enhanced supercritical CO₂ extraction had well preserved the structural stability of Fe₃O₄@SiO₂@meso-SiO₂ with high surface area ca. 569 m²/g. The strong magnetization value (60 emu/g) of the core–shell particles suggests their suitability for magnetic separation in a short time.

Keywords: Supercritical fluid extraction, Magnetic nanoparticle, Core-shell structure, Mesoporous silica, Modifier, Template removal.

1. INTRODUCTION

Core–shell components have been studied extensively over the last decade due to their potential applications [1-4]. Different from single-component that can only supply people with specific property; the core–shell components can integrate multiple advantages into one system for specific application [5, 6]. Among the core–shell structured composites, the composites with magnetic core and functionalized shell have attracted particular interest, mainly due to their potential applications in catalysis, drug delivery, adsorption, chromatography, and chemical or biologic sensors [7-13]. The inner core is composed of Fe₃O₄ nanospheres with magnetically responsive core makes it easy to recycle, the outer shell is nonporous silica shell which protect the magnetite from etching in harsh application occasions. In addition, the mesoporous silica shell is created on the structure by combination of CTAB- based self-assembly and sol-gel processing, in order to achieve higher adsorptive surface area which makes their further functionalization more convenient [8, 14, 15]. Several strategies for removing organic templates have been documented, including calcinations at high temperature, solvent extraction and supercritical fluid CO₂ extraction (SCF-CO₂) [16-23].

Calcination is frequently used to burn off organic templates at high temperatures. Although organic templates can completely be removed, but it is a time Therefore, a polar modifier like CH₃OH has been usually added to SCCO₂ for high effectiveness extraction of such compounds. The addition of a small amount of a polar organic modifier could significantly enhance the solvating power
of SCF-CO$_2$ to targeted organic templates [27-29, 34, 35]. In this paper, we have attempted to prepare a kind of novel Fe$_3$O$_4$ @SiO$_2$@meso-SiO$_2$ microspheres that was directly introduced into the system by syringe pump with flow rate by a liquid metering pump along with CO$_2$ flow. An optimal ratio of CH$_3$OH/CO$_2$ (0.1/1.0 ml/min) as feed and the extraction time of 3 h which were found out from other studies [26, 32, 33], used in this work. Then, the system was slowly depressurized at the experimental temperature. The surfactant (CTAB) was dissolved into the SCF-CO$_2$ in order to extract the template without any damaging effects on the structure of core-shell. The properties of the obtained materials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), N$_2$ adsorption-desorption and X-ray powder diffraction. The synthesized sample had a higher pore volume and surface area than those of the microspheres reported in the latest literatures [8, 17, 25, 36-38].

2. EXPERIMENTAL

2.1. Materials

Ferric chloride hexahydrate (FeCl$_3$.6H$_2$O), ferrous chloridre teterahydrate (FeCl$_2$.4H$_2$O), tetraethyl orthosilicate (TEOS), NH$_4$OH (28%), cetyltrimethylammonium bromide (CTAB), toluene and absolute alcohol (EtOH) were purchased from Merck Co., Germany.

2.2. Methods

2.2.1. Synthesis of Magnetic Nanoparticles (MNPs)

Fe$_3$O$_4$ magnetic nanoparticles (MNPs) were synthesized by chemical co-precipitation method [39]. Briefly, FeCl$_3$.6H$_2$O and FeCl$_2$.4H$_2$O (molar ratio, 1:2) were dissolved in deionized water. At 80 °C about 20 ml of NH$_4$OH solution was added under vigorous stirring in the presence of nitrogen atmosphere for 20 min. Afterwards, the black precipitate Fe$_3$O$_4$ was collected, washed with ethanol and deionized water and dried at 60 °C under vacuum overnight.

2.2.2. Synthesis of Fe$_3$O$_4$@SiO$_2$ Nanoparticles

Silica was coated on MNPs, by dispersing the MNPs in a flask containing 80 ml of ethanol and 20 ml of deionized water followed by sonication. The pH was maintained at 10 throughout the process by addition of ammonium hydroxide. During sonication, 0.4 ml of TEOS was added dropwise and after stirring for 8 h in the presence of nitrogen gas, the products were collected and washed with ethanol and deionized water, and dried under vacuum at 80 °C for 4 h.

2.2.3. Synthesis of Fe$_3$O$_4$@SiO$_2$@meso-SiO$_2$ Microspheres

The core-shell magnetic mesoporous Fe$_3$O$_4$@SiO$_2$@meso-SiO$_2$ microspheres with large mesopore size were prepared by the methodology described in ref [15] with some modifications. As-made Fe$_3$O$_4$@SiO$_2$ nanoparticles were dispersed in a mixed solution containing ethanol (30ml), deionized water (40 ml), and concentrated ammonia solution (1.5ml), and the solution was ultrasonicated for 45 min. then, CTAB (0.3 gr) was added into solution and ultrasonicated for another 45 min. subsequently, 0.5 ml of TEOS was added dropwise to the solution, after mechanical agitation for 10 h, the obtained particles were separated, washed with deionized water and dried under vacuum.

2.2.4. Template Removal

The methanol enhanced-SCF-CO$_2$ extraction, used for template CTAB removal from as-synthesized adsorbent, according to the method described in the literature [28, 30, 31, 34]. The experimental procedure may be briefed as follows. An as-synthesized Fe$_3$O$_4$@SiO$_2$@meso-SiO$_2$ microsphere was
packed in the extraction vessel. The liquid CO\textsubscript{2} were introduced into vessel (with flow rate 1 ml/min) by high pressure metering pump for 3 h. Methanol as polar modifier CO\textsubscript{2}/modifier in the extraction vessel and removed from structure. A schematic of the experimental setup is shown in Fig.1.

To study the influence of operating conditions, different temperatures between 70-90°C and pressures in the range 150 to 210 bar were chosen and the amount of template in the samples were determined by thermogravimetric analysis (TGA). The extraction efficiency was estimated by measuring the amount of template remaining on the both as-synthesized and methanol-enhanced-SCF-CO\textsubscript{2} processed samples by comparing their weight losses.

Figure 1. A schematic diagram for the experimental apparatus of modifier supercritical CO\textsubscript{2} extraction: (1) CO\textsubscript{2} cylinder, (2) condenser, (3) pump, (4) methanol reservoir (5) pump, (6) extraction vessel, (7) collection tube.

3. CHARACTERIZATION

Fourier transform-infrared (FT-IR) spectra were recorded on a Perkin-Elmer spectrophotometer using KBr pellet technique. Structure and morphology of the products were characterized by field emission scanning electron microscopy (FE-SEM, Hitachi1460, Japan). Nitrogen adsorption and desorption isotherm were measured at a liquid nitrogen temperature (77K) using a PHS-1020 (PHS, CHINA) analyzer. The specific surface area was calculated by the Brunaure-Emmett-Teller (BET) method. Pore volume and porosity were determined using Barret-Joyner-Halenda (BJH) model, respectively. X-ray diffraction (XRD) measurements were carried out with Burker AXS D8-advance X-ray diffractometer with CuK\textsubscript{α} radiation. Thermogravimetric analysis (TGA) data were determined on Mettle-Toledo thermal instrument from 20 to 750 °C with a heating rate of 10 °C/min under nitrogen flow. Particle size analyzer was utilized using PSA (JAPA Horiba LB 550).

4. RESULTS AND DISCUSSION

4.1. Effect of Temperature and Pressure

The experimental conditions for performing methanol-enhanced-SCF-CO\textsubscript{2} of CTAB were optimized with as-prepared Fe\textsubscript{3}O\textsubscript{4}@SiO\textsubscript{2}@meso-SiO\textsubscript{2} microspheres regard to extraction temperature and pressure. Fig. 2a shows the TGA results of the SCF-processed samples with respective pressure 150, 180 and 210 bar (T: 80°C, CH\textsubscript{3}OH/CO\textsubscript{2} ratio: 0.1/1.0 ml/min, t: 3h) along with the as-synthesized sample. The increase in extraction efficiency can be attributed to the increase in density and solvating ability of the supercritical fluid with increasing pressure. Therefore, the optimized pressure (180 bar) for higher extraction of templates (78%) is obtained. Fig. 2b shows the TGA results of the SCF-processed samples with respective temperature 70, 80 and 90 °C (P: 180 bar, CH\textsubscript{3}OH/CO\textsubscript{2} ratio: 0.1/1.0 ml/min, t: 3h) along with the as-synthesized sample. As seen, at 180 bar the increase of temperature from 70 to 80 °C results in the increase of the extraction efficiency (78%), whereas the increase of temperature above 80 °C leads to the decrease of the extraction efficiency approximately. This is may be related to the cationic nature of CTAB which leads to its strong attachment to the matrix pore surface via electrostatic interaction [40]. Thus to effectively remove the template CTAB, the matrix/template interactions must be overcome through thermal energy supplied during extraction by selective interaction of the CO\textsubscript{2}-modifier molecules with the...
matrix-template complex. By increasing the temperature above 80°C, the extraction efficiency decreased due to decreased the solubility of template in the supercritical fluid. Similar observations have been reported in several researches [41-43]. From the above results, the optimum temperature and pressure for effectively extraction of CTAB from the structure with CO_2-methanol mixture are 80 °C and 180 bar, respectively. The extraction efficiencies obtained at different pressures and temperatures are shown in Table 1. In the following parts, the structural properties of resultant optimized samples were characterized in detail.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Extraction Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=150 bar & T=80 °C</td>
<td>68</td>
</tr>
<tr>
<td>P=180 bar & T=80 °C</td>
<td>78</td>
</tr>
<tr>
<td>P=210 bar & T=80 °C</td>
<td>79</td>
</tr>
<tr>
<td>T=70 °C & P=180 bar</td>
<td>62</td>
</tr>
<tr>
<td>T=80 °C & P=180 bar</td>
<td>78</td>
</tr>
<tr>
<td>T=90 °C & P=180 bar</td>
<td>75</td>
</tr>
</tbody>
</table>

4.2. Characterization of the Multifunctional Mesoporous Microspheres

4.2.1 Morphological Study

The particle size and morphology of Fe_3O_4, Fe_3O_4@SiO_2 and Fe_3O_4@SiO_2@meso-SiO_2 were analyzed by FE-SEM micrographs and PSA images. The mean diameter of Fe_3O_4 nanoparticles is 7 nm with a spherical shape as shown in Fig. 3a. Moreover, the Fe_3O_4 nanoparticles are composed of many smaller nanoparticles with rough surface. After the sol-gel process, the Fe_3O_4@SiO_2 particles had an overall mean diameter of ~ 18 nm (Fig. 3b) and the smooth surfaces of the obtained Fe_3O_4@SiO_2 nanoparticles indicate that the SiO_2 layer was coated successfully onto the Fe_3O_4 nanoparticles. In Fig 3.c we can observe that Fe_3O_4@SiO_2@meso-SiO_2 microspheres still exhibit a core-shell structure with about 370 nm diameter.

4.2.2. Fourier Transform Infrared Spectroscopy Analysis

The FTIR spectra of Fe_3O_4 and Fe_3O_4@SiO_2@meso-SiO_2 are shown in Fig.4. The typical absorption peak for Fe_3O_4 at 594 cm^{-1} is an indication of the presence of Fe-O [44-46]. The weak and broad band around 3440 cm^{-1} is the typical O-H stretching vibration modes of adsorbed water [46, 47].

Figure 2. TGA curves of as-synthesized Fe_3O_4@SiO_2@meso-SiO_2 sample powders and SCF-processed samples with (a) different pressures (T: 80°C, CH_3OH/CO_2 ratio: 0.1/1.0 ml/min, t: 3h) and (b) different temperatures (P: 180 bar, CH_3OH/CO_2 ratio: 0.1/1.0 ml/min, t: 3h).
Figure 3. FE-SEM images and PSA results of (a) Fe$_3$O$_4$, (b) Fe$_3$O$_4$@SiO$_2$ and (c) Fe$_3$O$_4$@SiO$_2$@meso-SiO$_2$.

The adsorption peaks at 1056 and 801 cm$^{-1}$ result from asymmetric and symmetric vibration of Si-O-Si band in oxygen-silica tetrahedron, which confirms that the formation of silica layer on the surface of magnetic nanoparticles [17, 47-49].

4.2.3. N$_2$ Adsorption-Desorption Isotherm

The N$_2$ adsorption-desorption isotherm of Fe$_3$O$_4$@SiO$_2$@meso-SiO$_2$ in Fig.5 shows IV-type curve with H$_1$-hysteresis loop, which is usually attributed to the presence of well-uniform mesopores [25, 36]. The average mesopore size of these sample is 2.5 nm. The BET surface area and pore volume are 568.729 m2 g$^{-1}$ and 0.55 cm3 g$^{-1}$, respectively. As shown in Table 2 the obtained surface area and pore volume are higher than those samples which have been made by calcination or solvent extraction methods in previous studies. Therefore this large pore volume (size) can be very beneficial for the surface treatment to provide the opportunity for selective adsorption.

Figure 4. FTIR spectra of (a) Fe$_3$O$_4$ and (b) Fe$_3$O$_4$@SiO$_2$@meso-SiO$_2$.

4.2.4. XRD Analysis

The XRD patterns of the samples, including Fe$_3$O$_4$, Fe$_3$O$_4$@SiO$_2$ and
Table 2. Comparison of pore features for Fe₃O₄@SiO₂@meso-SiO₂ microsphere in references.

<table>
<thead>
<tr>
<th>Pore volume (cm³/g)</th>
<th>BET surface area (m²/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.41</td>
<td>378</td>
<td>[8]</td>
</tr>
<tr>
<td>0.28</td>
<td>274</td>
<td>[38]</td>
</tr>
<tr>
<td>0.18</td>
<td>403</td>
<td>[16]</td>
</tr>
<tr>
<td>-</td>
<td>359</td>
<td>[37]</td>
</tr>
<tr>
<td>0.24</td>
<td>202</td>
<td>[17]</td>
</tr>
<tr>
<td>0.21</td>
<td>293</td>
<td>[26]</td>
</tr>
<tr>
<td>0.55</td>
<td>569</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fe₃O₄@SiO₂@meso-SiO₂ are presented in Fig.6. Five characteristics peaks occurred at 2θ of 30.25°, 35.64°, 43.26°, 53.66°, 57.18° and 62.78° could be assigned to 220, 311, 400, 422, 511 and 440 for Fe₃O₄ were similar to the other samples which indicates that the crystalline structure of Fe₃O₄ were pure and there was no phase change in MNPs before and after surface coating and modification [50].

4.2.5. Vibrating Sample Magnetometer (VSM)

The magnetic hysteresis loops of Fe₃O₄ and Fe₃O₄@SiO₂@meso-SiO₂ are shown in Fig. 8 at room temperature. The saturation magnetizations of Fe₃O₄ and Fe₃O₄@SiO₂@meso-SiO₂ were 82 and 60 emu/g, which suggested that magnetic mesoporous silica show excellent magnetic property and they can be rapidly separated from solution with permanent hand-held magnets within a 20 second.

Figure 6. XRD patterns of (a) Fe₃O₄, (b) Fe₃O₄@SiO₂ and (c) Fe₃O₄@SiO₂@meso-SiO₂.

Figure 7. Separation of the Fe₃O₄@SiO₂@meso-SiO₂ particles by a magnet during 20 s.

Figure 8. VSM curves of (a) Fe₃O₄ and (b) Fe₃O₄@SiO₂@meso-SiO₂.

5. CONCLUSION

In this study, we prepared a novel Fe₃O₄@SiO₂@meso-SiO₂ microspheres with high BET surface area and superparamagnetic properties. The application of supercritical CO₂-methanol mixture extraction has been examined for synthesized magnetic mesoporous powders with cetyltrimethylamonium bromide as the organic template. The effect of pressure and temperature on the extraction
efficiency of CTAB is discussed in detail. The results indicated that over 75% of the organic template can be successfully recovered within 3 h under optimal conditions of 180 bar and 80 °C. Besides, the characterization studies depicted that the morphology and structure of Fe₃O₄ did not change significantly due to the coating, template extraction and modification stages.

REFERENCES

6. ACKNOWLEDGEMENT
Dr. Feridun Esmaeilzadeh, department of Chemical Engineering, Shiraz University, is greatly acknowledged for his technical support for our experiments. The authors are also grateful to Dr. Ghodratollah Absalan, department of chemistry, collage of science, Shiraz University for his kind assistance.

Khesht and Hassanajili

