Synthesis of NiO Nanoparticles: Effect of Method on Structural Properties of NiO Nanoparticles

Document Type : Research Paper


Department of Physics, Yazd University, Yazd, Iran


   This work synthesized NiO nanoparticles by chemical precipitation and thermal decomposition methods at different annealing temperatures. The properties of synthesized nanopowders were compared by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transformed infrared (FT-IR). The X-ray diffraction pattern analysis indicated that samples annealed at 300 and 600 have face-centered cubic (fcc) with lattice parameter a= 4.17960  and hexagonal structures with lattice parameters a=b= 2.95  , c=7.23 , respectively. Also, by increasing annealing temperature, the crystallinity and size of NiO nanoparticles have increased, and samples synthesized by the chemical precipitation method have a smaller size than other samples. For 600 calcination temperature and compared to other methods, XRD pattern of samples synthesized by thermal decomposition method showed higher intensity of peaks which resulted in larger nanoparticles. FT-IR results confirmed the formation of NiO nanoparticle composition. Also, the FT-IR spectrum of samples synthesized with different methods and varying annealing temperatures didn't change significantly. This enhanced chemical understanding is paramount for the rational control of synthesizing NiO and its applications in electronic and electro-optical research.


Main Subjects

  1. Halomoan, I., Yulizar, Y., Surya, R. M., Apriandanu, D. O. B., “ Facile preparation of CuO-Gd2Ti2O7 using Acmella uliginosa leaf extract for photocatalytic degradation of malachite green”, Materials Research Bulletin, 150 (2022) 111726.
  2. Elviera, E., Yulizar, Y., Apriandanu, D. O. B., Surya, R. M., “Fabrication of novel SnWO4/ZnO using Muntingia calabura L. leaf extract with enhanced photocatalytic methylene blue degradation under visible light irradiation”, Ceramics International, 48 (2022) 3564-3577.
  3. Aquisman, A. E., Wee, B. S., Chin, S. F., Kwabena, D. E., Michael, K. O., Bakeh, T., Semawi, Sh., Sylvester, D. S., “Synthesis, Characterization, and ‎Antibacterial Activity of ZnO ‎Nanoparticles from Organic Extract of ‎Cola Nitida and Cola Acuminata Leaf”, International Journal of Nanoscience and Nanotechnology, 16 (2020) 73-89.
  4. Yulizar, Y., Gunlazuardi, J., Apriandanu, D. O. B., Syahfitri, T. W. W., “CuO-modified CoTiO3 via Catharanthus roseus extract: A novel nanocomposite with high photocatalytic activity”, Materials Letters, 277 (2020) 128349.
  5. Zadeh, N. J., Zarandi, M. B., Nateghi, M. R., “Optical properties of the perovskite films deposited on meso-porous TiO2 by one step and hot casting techniques”. Thin Solid Films, 671 (2019) 139-146.
  6. Zadeh, N. J., Zarandi, M. B., Nateghi, M. R., “The Effect of Phase of Alumina on Crystallinity of Perovskite Layer in Perovskite Solar Cells”, Iranian Journal of Crystallography and Mineralogy, 26 (2018) 789–796.


  1. Yulizar, Y., Eprasatya, A., Apriandanu, D. O. B., Yunarti, R. T., “Facile synthesis of ZnO/GdCoO3 nanocomposites, characterization and their photocatalytic activity under visible light illumination”, Vacuum, 183 (2021) 109821.
  2. Apriandanu, D. O. B., Yulizar, Y., “Tinospora crispa leaves extract for the simple preparation method of CuO nanoparticles and its characterization”, Nano-Structures & Nano-Objects, 20 (2019) 100401.
  3. Rathinamala, I., Saranya, A., Jeyakumaran, N., Prithivikumaran, N., “Sol – Gel Spin Coated Cadmium Sulphide ‎Thin Films on Silicon (1 0 0) Substrates for ‎Optoelectronic Applications”, International Journal of Nanoscience and Nanotechnology, 13 (2017) 159-167.
  4. Bioki, H. A., Zarandi, M. B., “ZnS Nanoparticles Effect on Electrical Properties of Au/PANI-ZnS/Al Heterojunction”, International Journal of Nanoscience and Nanotechnology, 15 (2019) 45-53.
  5. Yulizar, Y., Abdullah, I., Surya, R. M., Parwati, N., Apriandanu, D. O. B., “Two-phase synthesis of NiCo2O4 nanoparticles using Bryophyllum pinnatum (Lam) Oken leaf extract with superior catalytic reduction of 2,4,6-trinitrophenol”, Materials Letters, 311 (2022) 131465.
  6. Zadeh, N. J., Zarandi, M. B., “Interfacial engineering of mp-TiO2/CH3NH3PbI3 with Al2O3: Effect of different phases of alumina on performance and stability of perovskite solar cells”, Journal of Materials Research, 36 (2021) 4938–4950.
  7. Bidoult, O., Maglione, M., Kchikech, M., “Polaronic relaxation in perovskite”, Rev., 89 (1995) 4195.
  8. Wu, J., Nan, C.W.,.Lin, Y., Deng, Y., “Giant Dielectric Permittivity Observed in Li and Ti Doped NiO” , Rev., 89 (2002) 217601.
  9. Fujii, E., Tomozawa, A., Torii, H., Takayama, R., “Preferred orientation of NiO Films Prepared by Plasma Enhanced Metal organic Chemical Vapor Deposition”, J. Appl. Phys., 35(1996) 1801-1803.
  10. Sato, H., Minami, T., Takata, S., Yamada, T., “Transparent conducting p-type NiO thin films prepared by magnetron sputtering”, Thin Solid Films, 236 (1993) 27.
  11. Wei, Y., Chen, M., Liu, W., Li, L., Yan, Y., “Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes”, ElectrochemicaActa, 247(2017) 107-115.
  12. Wen Chen, P. C., Chang, T., Ko, T., Hsu, S., Li, K., Wu, J., “Fast response of complementary electrochromic device based on Wo3/NiO electrodes”, Scientific reports, 10 (2020) 8430-8442.
  13. Deng, X., Zhang, L., Guo, J., Chen, Q., J. Ma, J., “ZnO enhanced NiO-based gas sensors towards ethanol”, Materials Research Bulletin, 90 (2017) 170-174.
  14. Alnarabiji, M. S., Tantawi, O., Ramli, A., Zabidi, N. A. M., Ghanem, O. B., Abdullah, B., “Comprehensive review of structured binary Ni-NiO catalyst: Synthesis, characterization and applications”, Renewable and Sustainable Energy Reviews, 114 (2019) 109326.
  15. Abadi, S. P. G., Zadeh, N. J., Zarandi, M. B., “Synthesis methods of NiOx nanoparticles and its effect on hole conductivity and stability of nip perovskite solar cells”, Synthetic Metals, 289 (2022) 117115.
  16. Zadeh, N. J., Zarandi, M. B., Nateghi, M. R., “Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: dependence of photovoltaic performance on morphology evolution”, Thin Solid Films, 660 (2018) 65-74.
  17. Zorkipli, N. N., Kaus, A. C., Mohamad, M. Z., “Synthesis of NiO Nanoparticles through Sol-gel Method”, Procedia Chemistry, 19 (2016) 626-63.
  18. Ukoba, K. O., Eloka-Eboka, F. L., “Review of nanostructured NiO thin film deposition using the spray pyrolysis technique”, Renewable and Sustainable Energy Reviews, 82 (2018) 2900-2915.
  19. Lenggoro, I. W., Itoh, Y., Iida, N., Okuyama, K., “Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis”, Materials Research Bulletin, 38 (2003) 1819-1827.
  20. Wang, C. B., Gau, G. Y., Gau, S. J.,  Tang, C. W.,  L. Bi, “Preparation and characterization of nanosized nickel oxide”, Catalysis Letters, 101 (2005) 241-247.
  21. Cao, L. Peng, T. Han, B.Liu, D. Zhu, C. Zhao, J. Xu, Tang, Y., Wang, J., He, S., “Hydrothermal synthesis of nanoparticles- assembled NiO microspheres and their sensing properties”, Physica E: Low-dimensional Systems and Nanostructures, 118 (2020) 113655.
  22. Yin, X., Chen, P., Que, M., Xing, Y., Que, W., Niu, C., Shao, J., “Highly Efficient Flexible Perovskite Solar cells Using Solution- Derived NiOx Hole Contacts”, ACSNANO, 10 (2016) 3630-3636.
  23. Wardani, M., Yulizar, Y., Abdullah, I., Apriandanu, D. O. B., “Synthesis of NiO nanoparticles via green route using Ageratum conyzoides L. leaf extract and their catalytic activity”, IOP Conf. Ser.: Mater. Sci. Eng., 509 (2019) 012077.
  24. Kim, J. K., “PEG-assisted Sol-gel Synthesis of Compact Nickel Oxide Hole-Selective Layer with Modified Interfacial Properties for Organic Solar Cells”, Polymers, 11 (2019) 120.
  25. Miao, R., Zeng, W., Gao Q., “SDS-assisted hydrothermal synthesis of NiO flake-flower architectures with enhanced gas-sensing properties”, Applied Surface Science, 384 (2016) 304–310.
  26. BahariMollaMahaleh, Y., Sadrnezhaad, S. K., Hosseini, , “NiO Nanoparticles Synthesis by Chemical Precipitation and Effect of Applied Surfactant on Distribution of Particle Size”, Journal of Nanomaterials (2008) 470595.
  27. Khani, S., Jafarian, M., “Synthesized of Nickel Oxide Nanostructures via Thermal Decomposition of Nickel Nitrate and Cloride at Low Temperature”, Journal of Nano Materials, 6 (2015) 221-227


  1. Ukoba, K.O., Eloka-Eboka, A.C., Inambao, F.L. “Review of nanostructured NiO thin film deposition using the spray pyrolysis technique”, Renewable and Sustainable Energy Reviews, 82 (2018) 2900-2915.
  2. Cullity, B. D., “Elements of X-ray Diffraction”, Addison-Wesley Publishing Co. Inc., New York, (1976).
  3. Sharma, R., Acharya, A. D., Moghe, S., Shrivastava, S. B., Gangrade, M., Shripathi, T., Ganesan, V., “Effect of cobalt doping on microstructural and optical properties of nickel oxide thin films”, Materials Science in Semiconductor Processing, 23 (2014) 42-49.
  4. Rahdar, A., Aliahmadi, M., Azizi, Y., “NiO Nanoparticles: synthesis and Characterization”, Journal of Nanostructures, 5 (2015) 145-151.