Investigation of Compressive Strength of ‎Cement/Silica Nanocomposite Using ‎Synthesized Silica Nanoparticles from ‎Sugarcane Bagasse Ash ‎

Document Type : Research Paper

Authors

Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal

Abstract

   The effect of silica nanoparticles used as a nanoporous additive in cement was studied with various wt- % ratios. Saccharum officinarum bagasse, an agricultural waste residue was used to synthesize silica nanoparticles as it contains a high amount of silica. The synthesized silica nanoparticles were characterized through XRD and FTIR spectroscopic analysis techniques. By the analysis of XRD, crystalline peaks were found to be particularly of quartz form of silica with an average size of 25.58 nm. The characteristic functional group of the extracted silica nanoparticle was observed at various absorption bands such as the peaks at 1056 cm-1 and 794 cm-1 correspond to Si-O-Si asymmetric and Si-O symmetric stretching modes respectively. The extracted silica nanoparticles were applied to form nanocomposites with cement to investigate their compressive strength and the silica nanoparticle was found to increase the compressive strength of cement due to the pozzolanic reaction of silica nanoparticles with Ca(OH)2.

Keywords

Main Subjects


  1. Biernacki, J. J., Bullard, J. W., Sant, G., Brown, K., Glasser, F. P., Jones, S., Ley, T., Livingston, R., Nicoleau, L., Olek, J., Sanchez, F., Shahsavari, R., Stutzman, P. E., Sobolev, K. P., Prater, , "Cements in the 21st Century: Challenges, Perspectives, and Opportunities", J. Am. Ceram. Soc., 100(7) (2017) 2746-2773.
  2. Maghsoudi, A. A., Soheil, M. J., Darbhenz A., "Effect of the Nanoparticles in the New Generation of Concretes, SCC", J. Nanosci. Nanotechnol., 6(3) (2010) 137-143.
  3. Chandwani, V., Agrawal, V., Nagar, R., “Applications of Artificial Neural Networks in Modeling Compressive Strength of Concrete : A State of the Art Review”, J. Curr. Eng. Technol., 4(4) (2014) 2949–2956.
  4. Papatzani, S., Paine, K., Calabria, H. J., “The Effect of the Addition of Nanoparticles of Silica on the Strength and Microstructure of Blended Portland Cement Pastes”, Boston, May 12-15, International Concrete Sustainability Conference, (2014) [Online]. Available: http://www.nrmcaevents.org/?nav=display&file=648.
  5. Jafarbeglou, M., Abdouss, M., Ramezanianpour, A. A., "Nanoscience and Nano Engineering in Concrete Advances A Review", J. Nanosci. Nanotechnol.,11(4) (2015) 263-273.
  6. Gupta, S., “Application of Silica Fume and Nanosilica in Cement and Concrete – A Review”, Today's Ideas - Tomorrow's Technol., 1(2) (2013) 85–98.
  7. Li, X., Liu, Y. M., Liw, G., Li, C. Y., Sanjayan, J. G., Duan, W. H., Li, Z., “Effects of Graphene Oxide Agglomerates on Workability, Hydration, Microstructure and Compressive Strength of Cement Paste”, Constr Build Mater., 145 (2017) 402–410.
  8. Jamsheer, A. F., Kupwade, P. K., Büyüköztürk, O., Bumajdad, A., “Analysis of Engineered Cement Paste using Silica Nanoparticles and Metakaolin using 29Si NMR, Water Adsorption and Synchrotron X-ray Diffraction”, Constr Build Mater, 180 (2018) 698–709.
  9. Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M., Labrincha, J. A., “Effect of Nanosilica and Microsilica on Microstructure and Hardened Properties of Cement Pastes and Mortars”, Appl. Ceram., 109(2) (2010) 104–110.
  10. El-Gamal, S. M. A., Abo-El-Enein, S. A., El-Hosiny, F. I., Amin, M. S., Ramadan, M., “Thermal Resistance, Microstructure and Mechanical Properties of Type I Portland Cement Pastes Containing Low-Cost Nanoparticles”, Therm. Anal. Calorim., 131,(2) (2018) 949–968.
  11. Pérez-Nicolás, M., Navarro-Blasco, I., Fernández, J. M., Alvarez, J. I., “The Effect of TiO2 Doped Photocatalytic Nano-additives on the Hydration and Microstructure of Portland and High Alumina Cements”, Nanomaterials, 7(10) (2017) 329-350.
  12. Amer, A. A., El-Sokkary, T. M., Abdullah, N. I., “Thermal Durability of OPC Pastes Admixed with Nano Iron Oxide", HBRC J., 11(2) (2015) 299–305.
  13. Shakrani, S. A., Ayob, A., Rahim, M. A. A., Alias, S., “Performance of Nano Materials in Pervious Concrete Pavement: A Review”, AIP Conf. Proc., 2030(November) (2018) doi: 10.1063/1.5066649.
  14. Gaitero, J. J., Zhu, W., Campillo, I., “Multi-Scale Study of Calcium Leaching in Cement Pastes with Silica Nanoparticles”, Nanotechnology in Construction, 3  (2009) 193- 198.
  15. Norsuraya, S., Fazlena, H., Norhasyimi, R., “Sugarcane Bagasse as a Renewable Source of Silica to Synthesize Santa Barbara Amorphous-15 (SBA-15)”, Procedia Eng., 148 (2016) 839–846.
  16. Bhagiyalakshmi, M., Yun, L. J., Anuradha, R., Jang, H. T., “Utilization of Rice Husk Ash as Silica Source for the Synthesis of Mesoporous Silicas and their Application to CO2 Adsorption through TREN/TEPA Grafting”, Hazard. Mater., 171(1–3) (2010) 928–938.
  17. Arumugam, A., Ponnusami, V., “Modified SBA-15 Synthesized using Sugarcane Leaf Ash for Nickel Adsorption”, Indian J. Chem. Technol., 20( 2) (2013) 101–105.
  18. Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., Pandey, A., “Bioethanol Production from Rice Straw: An Overview”, Technol., 101(13) (2010) 4767–4774.
  19. Roselló, J., Soriano, L., Santamarina, M. P., Akasaki, J. L., Melges, J. L., Payá, J., “Microscopy Characterization of Silica-Rich Agrowastes to be used in Cement Binders: Bamboo and Sugarcane Leaves”, and Microanal., 21(5) (2015) 1314–1326.
  20. Okoronkwo, E. A., Imoisili, P. E., Olusunle, S. O. O., “Extraction and Characterization of Amorphous Silica from Corn Cob Ash by Sol-Gel Method”, Chemistry and Materials Research, 3(4) (2013) 68–72.
  21. Faizul, C. P., Abdullah, C., Fazlul, B., “Review of Extraction of Silica from Agricultural Wastes using Acid Leaching Treatment”, Mat. Res., 626 (2013) 997–1000.
  22. Maity A., Polshettiwar, V., “Dendritic Fibrous Nanosilica for Catalysis, Energy Harvesting, Carbon Dioxide Mitigation, Drug Delivery, and Sensing”, Chem Sus Chem, 10(20) (2017) 3866–3913.
  23. Ghasemi, E., Ghahari, M., "Synthesis of Silica Coated Magnetic Nanoparticles", J. Nanosci. Nanotechnol., 12(2) (2015) 133-137.
  24. Kalapathy, U., Proctor, A., Shultz, J., “A Simple Method for Production of Pure Silica from Rice Hull Ash”, Technol., 73(3) (2000) 257–262.
  25. Rafiee, E., Shahebrahimi, S., Feyzi, M., Shaterzadeh, M., “Optimization of Synthesis and Characterization of Nanosilica Produced from Rice Husk (a Common Waste Material)”, Nano Lett., 2(1) (2012) 1–8.
  26. Gorji, B., Fazaeli, R., Niksirat, N., “Synthesis and Characterizations of Silica Nanoparticles by a New Sol-Gel Method”, Appl. Chem. Res., 6(3) (2012) 22–26.
  27. Assaedi, H., Alomayri, T., Kaze, C. R., Jindal, B. B., Subaer, S., Shaikh, F., Alradddai, S., “Characterization and Properties of Geopolymer Nanocomposites with Different Contents of Nano-CaCO3”, Build. Mater., 252, (2020) 119137.
  28. Pabst W., Gregorová, E., “Elastic Properties of Silica Polymorphs-a Review”, - Silik., 57(3) (2013) 167–184.
  29. Alves, R. H., Da Silva Reis, T.V., Rovani, S., Fungaro, D. A., “Green Synthesis and Characterization of Biosilica Produced from Sugarcane Waste Ash”, , (2017) 1-10.
  30. Ferreira, C. S., Santos, P. L., Bonacin, J. A., Passos, R. R., Pocrifka, L.A., “Rice Husk Reuse in the Preparation of SnO2/SiO2 Nanocomposite”, Res., 18(3) (2015) 639–643.
  31. Santana Costa J. A., Paranhos, C. M., “Systematic Evaluation of Amorphous Silica Production from Rice Husk Ashes”, Clean. Prod., 192 (2018) 688–697.
  32. Imoisili, P. E., Ukoba, K. O., Jen, T. C., “Green Technology Extraction and Characterisation of Silica Nanoparticles from Palm Kernel Shell ash via Sol-gel”, J Mater. Res. Technol., 9(1)   (2020) 307–313.
  33. Rovani, S., Santos, J. J., Corio, P., Fungaro, D. A., “An Alternative and Simple Method for the Preparation of Bare Silica Nanoparticles using Sugarcane Waste Ash, an Abundant and Despised Residue in the Brazilian Industry”, Braz. Chem. Soc., 30(7) (2019) 1524–1533.
  34. Montgomery, J., Abu-Lebdeh, T. M., Hamoush, S. A., Picornell, M., “Effect of Nano Silica on the Compressive Strength of Harden Cement Paste at Different Stages of Hydration”, J. Eng. App. Sci., 9(1) (2016) 166–177.
  35. Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., Mishra, G., “Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar”, J. Concr.  Struct. Mater., 9(2) (2015) 207–217.
  36. Tobon J. I., Paya J., Restrepo O. J., “Study of Durability of Portland Cement Mortars Blended with Silica Nanoparticles”, Build. Mater., 80(1) (2015) 92-97.
  37. Singh L. P., Ali D., Sharma U., “Studies on Optimization of Silica Nanoparticles Dosage in Cementitious Systems”, Concr. Compos., 70 (2016) 60-68.
  38. Gaitero, J. J., Campillo, I., Guerrero, A., “Reduction of the Calcium Leaching Rate of Cement Paste by Addition of Silica Nanoparticles”, Cem. Concr. Res., 38(8–9) (2008) 1112–1118.