In-vitro Biocompatibility Studies of Mint Oil-Vitamin D Nanoparticles

Document Type : Research Paper


School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Plot No 50, Sector 15, CBD Belapur, Navi Mumbai, India


   Mint, a medicinal plant has gained immense attention from food and pharmaceutical industries because of its numerous health benefits while treating Vitamin D (Vit D) deficiency via recommended fortified food always remains the primary objective of nutritionists. We aimed to evaluate the biocompatible nature of our mint oil-Vit D encapsulated β-Cyclodextrin carbon-based nanoparticles before establishing their potential application in the medicine and food industry. The repercussion of different concentrations of nanoparticles was evaluated on various model systems (microbes, cell lines, erythrocytes, plant seeds and zebrafish embryos) and result obtained was subjected to statistical analysis. In our study, synthesized nanoparticles revealed no antimicrobial activity. The cytotoxicity and anticancer potential of the nanoparticles were studied using L929 and HeLa cell lines respectively at various concentrations and divulged the fact that these nanoparticles induce significant cell death at higher concentrations but remain non-detrimental at lower concentrations. Further, exposure of nanoparticles to RBCs presented a dose-dependent induction of hemolysis and lipid peroxide production. A similar trend of toxicity was evident in the zebrafish embryo as well at higher concentrations. Phytotoxicity analysis revealed no effect of nanoparticles on germination of seeds albeit the root and shoot length of seedlings were affected significantly. Overall, our results indicate high biocompatibility of these nanoparticles only at lower concentrations and their further applications in various industries should strictly consider minimal doses.


Main Subjects

  1. Hosam, O. E., Nader, A. A., “Essential oils of mint between benefits and hazards”, Journal of Essential Oil Bearing Plants", 16 (2013) 429-43.
  2. Mazloom, A. S., Hashemiravan, M., Farhadyar, N., "Nano Particles of Blueberry in Inulin and b-Cyclodextrin Microencapsules", J. Nanosci. Nanotechnol., 9 (2013) 185-192.
  3. Moradi, S., Barat, A., "Essential Oils Nanoemulsions: Preparation, Characterization and Study of Antibacterial Activity against Escherichia Coli”, J. Nanosci. Nanotechnol., 15 (2019) 199-210.
  4. Zhenliang, S., Huiyan, W., Wang, J., “Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China”, Plos One, 9 (2014).
  5. Silveirae, R. C., Lima, T. C., Nobrega, F. R., “Analgesic-like activity of essential oil constituents An update”, International Journal of Molecular Sciences,18 (2017) 2392.
  6. Can, E., Sumer, E., “Anesthetic and sedative efficacy of peppermint (Mentha piperita) and lavender (Lavandula angustifolia) essential oils in blue dolphin cichild (Cyrtocara moorii)”, Turkish Journal of Veterinary and Animal Sciences, 43 (2019) 334-341.
  7. Chiang, K. C., Chen, T. C., “Anticancer Effects of Vitamin D. Anticancer Agents”, Chem., 13 (2013) 126-139.
  8. Aparna, P., Muthathal, S., Nongkynrih, B., “Vitamin D deficiency in India”, Journal of Family Med and Prim Care, 7 (2018) 324–330.
  9. Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., “Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides”, Sci .Rep., 8 (2018) 2067.
  10. Gadade, D. D., Pekamwar, S. S., “Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics”, Advanced pharmaceutical bulletin, 10 (2020) 166–183.
  11. Tungare, K., Bhori, M., Racherla, K. S., Sawant, S., “Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera”, 3 Biotech, 10 (2020) 540.
  12. Kermasha, B. F. S., Alli, I., Mulligan, C., “Encapsulation in the food industry: A Review”, J. Food Sci. Nutr., 50 (1990) 213–224.
  13. Zuidam, N. J., Nedovic, V., Heinrich, J., (Eds.), In “Encapsulation Technologies for Food Active Ingredients and Food Processing”, Springer: Dordrecht, The Netherlands, (2019) 127-160.
  14. Dima, C., Cotarlet, M., Tiberius, B., “Encapsulation of Coriander Essential Oil in Beta-Cyclodextrin: Antioxidant and Antimicrobial Properties”, Romanian Biotechnological Letters, 19 (2014) 9128-9140.
  15. Singh, R., Muftah, A. M., Shushni, “Antibacterial and antioxidant activities of Mentha piperita”, Arabian Journal of Chemistry, 8 (2011) 322–328.
  16. Mosmann, T., “Rapid Colorimetric Assay for Cellular Growth and Survival Application to Proliferation and Cytotoxicity Assays”, Immunol. Method, 65 (1984) 55–63.
  17. Ohkawa, H., Ohishi, N., Yagi, K., “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction”, Biochem,, 95 (1979) 351-358.
  18. Misra, H. P., Fridovich, I., “The generation of superoxide radical during the autoxidation of hemoglobin”, Biol. Chem., 247 (1972) 6960-6962.
  19. Claiborne, A., Raton, B., (Eds.), “Catalase activity. In handbook of Methods for Oxygen Radical Research”, CRC Press, 1 (1985) 283-284.
  20. Moron, M. S., Depierre, J. W., Mannervik, B., “Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver”, Biophys. Acta, 582 (1979) 67-78.
  21. Paglia, D. E., Valentine, W. N., “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase”, Lab. Clin. Med., 70 (1967) 158-169.
  22. Carlberg, I., Mannervik, B., “Purification and characterization of glutathione reductase from calf liver. An improved procedure for affinity chromatography on 2’,5’-ADP-Sepharose 4B”, Biochem., 116 (1981) 531-536.
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., “Protein measurement with the Folin phenol reagent”, Biol. Chem., 193 (1951) 265-275.
  24. Westerfield, M., “The zebrafish book: A guide for the laboratory use of zebrafish Danio (brachydanio) rerio”, University of Oregon Press, Eugene (2000).
  25. OECD Guidelines for the Testing of Chemicals, Section 2, Fish Embryo AcuteToxicity (FET) Test No. 236. Paris, OECD, (2013).
  26. Kumar, S., Patra, A. K., Datta, S. C., “Phytotoxicity of nanoparticles to seed germination of plants”, Purakayastha International Journal of Advanced Research, 3 (2015) 854-865.
  27. Kumar, M., Curtis, A., Clare, H., “Application of Nanoparticle Technologies in the Combat against Anti-Microbial Resistance”, ISRN Pharmaceutics, 10 (2018) 11.
  28. Pedro, B. V., Matthew, M. P., Alexandra, F. R., “Nano-Strategies to Fight Multidrug Resistant Bacteria-A Battle of the Titans”, Frontiers in Microbiology, 9 (2018) 1441.
  29. Sivropoulou, A., Stella, K., Thomas, L., “Antimicrobial Activity of Mint Essential Oils”, Agric. Food Chem., 43 (1985) 2384-2388.
  30. Bhaisare, M. L., Abou Talib, M., Khan, P. S., “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging”, Microchimica Acta, 182 (2019) 2173-218.
  31. Ray, S. C., Saha, A., Jana, N. R., “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application”, The Journal of Physical Chemistry C, 113 (2008) 18546-18551.
  32. Hajighasemi, F., Hashemi, V., Khoshzaban, F., “Cytotoxic effect  of  Mentha  spicata  aqueous  extract  on cancerous  cell  lines  in  vitro”, Journal  of  Medicinal  Plants  Research, 5(20) (2011) 5142-5147.
  33. Ebrahimzadeh, M. A., Nabavi, S. M., Nabavi, S. F., “Biological activity of mentha aquatic”, Pharmacologyonline, 2 (2010) 611-619.
  34. Davis, M. E., Brewster, M. E., “Cyclodextrin based pharmaceutics: past, present and future”, Nature Reviews Drug Discovery, 3 (2004) 1023-1035.
  35. Bellassoued, K., Hsouna, A. B., Athmouni, K., “Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats”, Lipids Health Dis., 17 (2008) 9.
  36. Ogaly, H. A., Eltablawy, N. A., Abd-Elsalam, R. E., “Antifibrogenic Influence of Mentha piperita L. Essential Oil against CCl4- Induced Liver Fibrosis in Rats”, Oxidative Medicine and Cellular Longevity, (2018) 1-15.
  37. Perlman, L. P., “Mouse models of human disease: An evolutionary perspective”, PMCID, (2016) 170-176.
  38. Martinez, C. S., Igartúa, D. E., Calienni, M. N., “Relation between biophysical properties of nanostructures and their toxicity on zebrafish”, Biophysical Reviews, 9 (2017) 775–791.
  39. Borges, R. S., Sanchez-ortiz, B. L., Filho, A. C., “Toxicity assessment of nanoemulsion containing the essential oil of rosmarinus officinalis. in zebrafish”, Proceedings of The IIER International Conference, (2018).
  40. De la Paz, J. F., Beiza, N., Paredes-Zúñiga, S., “Triazole Fungicides Inhibit Zebrafish Hatching by Blocking the Secretory Function of Hatching Gland Cells”, International Journal of Molecular Sciences, 18 (2017) 710.
  41. De Luca, E., Zaccaria, G. M., Hadhoud, M., “ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos”, Scientific Reports, 4 (2014) 4898.
  42. Kim, S. H., Sharma, C., Kang, S. C., “Ajowan Oil Potentiates Ros-mediated Teratogenic Effect in Zebrafish Embryos”, Journal of Essential Oil Bearing Plants, 20 (2017) 883-896.
  43. Henry, T. R., Spitsbergen, J. M., Hornung, M. W., “Early life-stage toxicity of 2,3,7,8-tetrachlorodibenzo-p -dioxin in zebrafish (Danio rerio)”, Appl. Pharmacol., 142 (1997) 56–68.
  44. Ibanez, M. D., Blázquez, M. A., “Phytotoxicity of Essential Oils on Selected Weeds: Potential Hazard on Food Crops”, MDPI, 7 (2018) 79.