Antibacterial Characteristics of CuS Nanoplates Anchored onto g-C3N4 Nanosheets, Suspended in PMMA Matrix

Document Type : Research Paper


1 Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran

2 Department of Chemical Engineering, Energy Institute of Higher Education, Saveh 67746–39177, Iran

3 Department of Chemical Engineering, Energy Institute of Higher Education, Saveh 67746– 39177, Iran


   Nowadays, due to bacterial antibiotic resistance, the design of new high-performance antibiotics to maintain human health has been a significant challenge. Accordingly, photothermal antibiotics have been developed based on semiconductor materials such as graphene. Herein, copper sulfide (CuS) nanoplates and graphitic carbon nitride (g-C3N4)/CuS were synthesized as salient antibacterial agents and their antibacterial features were assessed using polymethyl methacrylate (PMMA) as a practical matrix. The morphology and structure of nanostructures were characterized by X-ray diffraction (XRD), ultraviolet (UV)-visible (Vis) diffuse reflectance spectroscopy (DRS), and field emission scanning electron microscopy (FESEM). Based on the results obtained by the UV-Vis light absorption, the g-C3N4, CuS, and g-C3N4/CuS nanostructures illustrated strong absorptions in the visible light region while demonstrated 2.92, 1.20, and 0.27 eV band gaps, respectively. Eventually, the study of the antibacterial properties of the nanostructures exhibited that the zone of inhibition is augmented by anchoring the CuS nanoplates onto the g-C3N4 surface. Interestingly, g-C3N4/CuS nanocomposite brought 12 and 17 mm zone of inhibitions for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. More significantly, the results attested that inserting the g-C3N4 nanostructures promote the antibacterial features of CuS nanoplates, originated from its nucleation effect boosting surface area to volume ratio of the sulfides, amplifying interfacial interaction, and elevating established reactive oxidative species (ROS) killing the bacteria. The presented research opens new windows toward augmenting the antibacterial features of biomedical polymers.


Main Subjects

  1. Breijyeh, Z., Jubeh, B., Karaman, R., ‘‘Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it’’, Molecules, 25 (2020) 1340.
  2. Thapa, S. P., Shrestha, S., & Anal, A. K., ‘‘Addressing the antibiotic resistance and improving the food safety in food supply chain (farm-to-fork) in Southeast Asia’’, Food Control, 108 (2020) 106809.
  3. Talebian, N., Nilforoushan, M. R., & Zargar, E. B., ‘‘Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO2 nanocomposite thin films’’, Applied Surface Science, 258 (2011). 547-555.
  4. Wang, L., Zhang, X., Yu, X., Gao, F., Shen, Z., Zhang, X., Chen, C., ‘‘An all organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity’’, Advanced Materials, 31 (2019) 1901965.
  5. Pant, B., Pant, H. R., Barakat, N. A., Park, M., Jeon, K., Choi, Y., Kim, H. Y., ‘’Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities’’, Ceramics International, 39 (2013) 7029-7035.
  6. Aksoy, I., Kucukkececi, H., Sevgi, F., Metin, O., & Hatay Patir, I., ‘‘Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria’’, ACS Applied Materials & Interfaces, 12 (2020) 26822-26831.
  7. John, T., Parmar, K. A., Kotval, S. C., & Jadhav, J., ‘‘Synthesis, Characterization, Antibacterial‎ and Anticancer Properties of Silver‎ Nanoparticles Synthesized from Carica‎ Papaya Peel Extract’’, International Journal of Nanoscience and Nanotechnology, 17 (2021) 23-32.
  8. Waghmode, S. R., Dudhane, A. A., & Mhaindarkar, V. P., ‘‘Syzygium cumini Mediated Green Synthesis of Silver Nanoparticles for Reduction of 4-Nitrophenol and Assessment of its Antibacterial Activity’’, (2021).
  9. Hussein, M. A. M., Grinholc, M., Dena, A. S. A., El-Sherbiny, I. M., & Megahed, M., ‘‘Boosting the antibacterial activity of chitosan–gold nanoparticles against antibiotic–resistant bacteria by Punicagranatum L. extract’’,Carbohydrate Polymers, 256 (2021) 117498.
  10. Dudhane, A. A., Waghmode, S. R., Dama, L. B., Mhaindarkar, V. P., Sonawane, A., & Katariya, S., ‘‘Synthesis and Characterization of Gold‎ Nanoparticles using Plant Extract of‎ Terminalia arjuna with Antibacterial‎ Activity’’, International Journal of Nanoscience and Nanotechnology, 15 (2019) 75-82.
  11. Guo, G., Xu, Q., Zhu, C., Yu, J., Wang, Q., Tang, J., ... & Zhang, X., ‘‘Dual-temporal bidirectional immunomodulation of Cu-Zn Bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis’’, Applied Materials Today, 22 (2021) 100888.
  12. Jose, M., Szymańska, K., Szymański, K., Moszyński, D., Mozia, S,‘‘Effect of copper salts on the characteristics and antibacterial activity of Cu-modified titanate nanotubes’’, Journal of Environmental Chemical Engineering, 8 (2020) 104550.
  13. Peymanfar, R., Selseleh-Zakerin, E., Ahmadi, A., Tavassoli, S. H., ‘‘Architecting functionalized carbon microtube/carrollite nanocomposite demonstrating significant microwave characteristics’’, Scientific reports, 11 (2021) 1-15.
  14. Mirzaei, A., Jamshidi, E., Morshedloo, E., Javanshir, S., & Manteghi, F., ‘‘Carrageenan assisted synthesis of morphological diversity of CdO and Cd (OH) 2 with high antibacterial activity’’, Materials Research Express, 8 (2021) 065006.
  15. Aquisman, A. E., Wee, B. S., Chin, S. F., Kwabena, D. E., Michael, K. O., Bakeh, T., Sylvester, D. S., ‘‘Synthesis, Characterization, and‎ Antibacterial Activity of ZnO‎ Nanoparticles from Organic Extract of‎ Cola Nitida and Cola Acuminata Leaf’’‎, International Journal of Nanoscience and Nanotechnology, 16 (2020) 73-89.
  16. Pal, S., Mondal, S., Maity, J., Mukherjee, R., ‘‘Synthesis and characterization of ZnO nanoparticles using Moringa oleifera leaf extract: investigation of photocatalytic and antibacterial activity’’, International Journal of Nanoscience and Nanotechnology, 14 (2018) 111-119.
  17. Wang, B., Moon, J. R., Ryu, S., Park, K. D., Kim, J. H., ‘‘Antibacterial 3D graphene composite gel with polyaspartamide and tannic acid containing in situ generated Ag nanoparticle’’, Polymer Composites, 41 (2020) 2578-2587.
  18. Chen, J., Li, H., Fang, C., Cheng, Y., Tan, T., Han, H., ‘‘ In situ synthesis and properties of Ag NPs/carboxymethyl cellulose/starch composite films for antibacterial application’’, Polymer Composites, 41 (2020) 838-847.
  19. Shariatinia, Z., Nikfar, Z., Gholivand, K., Abolghasemi Tarei, S., ‘‘Antibacterial activities of novel nanocomposite biofilms of chitosan/phosphoramide/Ag NPs’’, Polymer Composites, 36 (2015) 454-466.
  20. Nahar, K., Aziz, S., Bashar, M., Haque, M., Al-Reza, S. M., ‘‘Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential’’, International Journal of Nano Dimension, 11 (2020) 88-98.
  21. Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., Park, W. H., ‘‘Shape-dependent antimicrobial activities of silver nanoparticles’’, International journal of nanomedicine, 14 (2019)
  22. Kasi, G., Viswanathan, K., & Seo, J., Effect of annealing temperature on the morphology and antibacterial activity of Mg-doped zinc oxide nanorods’’, Ceramics International, 45 (2019) 3230-3238.
  23. Ali, S., Perveen, S., Ali, M., Jiao, T., Sharma, A. S., Hassan, H., Chen, Q., ‘‘Bioinspired morphology-controlled silver nanoparticles for antimicrobial application’’, Materials Science and Engineering: C, 108 (2020) 110421.
  24. Arakha, M., Saleem, M., Mallick, B. C., Jha, S., ‘‘The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle’’, Scientific reports, 5 (2015) 1-10.
  25. Salvioni, L., Galbiati, E., Collico, V., Alessio, G., Avvakumova, S., Corsi, F., Colombo, M.,‘‘Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations’’, International Journal of Nanomedicine, 12 (2017) 2517.
  26. Truong, T. T. V., Kumar, S. R., Huang, Y. T., Chen, D. W., Liu, Y. K., Lue, S. J., Size-Dependent Antibacterial Activity of Silver Nanoparticle-Loaded Graphene Oxide Nanosheets’’, Nanomaterials, 10 (2020) 1207..
  27. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Mohamad, D., ‘‘Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism’’, Nano-micro letters, 7 (2015) 219-242.
  28. Mirzaei, A., Peymanfar, R., Khodamoradipoor, N., ‘‘Investigation of size and medium effects on antimicrobial properties by CuCr2O4 nanoparticles and silicone rubber or PVDF’’, Materials Research Express, 6 (2019) 085412.
  29. Tian, Y., Qi, J., Zhang, W., Cai, Q., Jiang, X., Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles’,  ACS applied materials & interfaces, 6 (2014) 12038-12045.
  30. Xu, Z., Li, T., Zhang, F., Hong, X., Xie, S., Ye, M., Liu, X.,‘‘Highly flexible, transparent and conducting CuS-nanosheet networks for flexible quantum-dot solar cells’’, Nanoscale, 9 (2017).3826-3833.
  31. Tirado, J., Roldán-Carmona, C., Muñoz-Guerrero, F. A., Bonilla-Arboleda, G., Ralaiarisoa, M., Grancini, G., Jaramillo, F., Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers nip perovskite solar cells: Application and working insights’’, Applied Surface Science, 478 (2019) 607-614.
  32. Borthakur, P., Das, M. R., Szunerits, S., Boukherroub, R.,‘‘CuS decorated functionalized reduced graphene oxide: a dual responsive nanozyme for selective detection and photoreduction of Cr (VI) in an aqueous medium’’, ACS Sustainable Chemistry & Engineering, 7 (2019) 16131-16143.
  33. Nath, S. K., Kalita, P. K.,‘‘Temperature dependent structural, optical and electrical properties of CuS nanorods in aloe vera matrix’’, Nano-Structures & Nano-Objects, 25 (2021) 100651.
  34. Cao, C., Wang, F., Lu, M., ‘‘Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation’’, Materials Letters, 260 (2020)
  35. Du, C., Zhu, Y., Wang, Z., Wang, L., Younas, W., Ma, X., Cao, C., ‘‘Cuprous self-doping regulated mesoporous CuS nanotube cathode materials for rechargeable magnesium batteries’’, ACS applied materials & interfaces, 12 (2020) 35035-35042.
  36. Guan, J., Peng, J., Jin, X., ‘‘Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide’’, Analytical Methods, 7 (2015) 5454-5461.
  37. Pal, D., Singh, G., Goswami, Y. C., & Kumar, V., Synthesis of randomly oriented self assembled CuS nanorods by co-precipitation route’’, Journal of Materials Science: Materials in Electronics, 30 (2019)15700-15704.
  38. Yendrapati, T. P., Gautam, A., Bojja, S., Pal, U., ‘‘Formation of ZnO@ CuS nanorods for efficient photocatalytic hydrogen generation’’, Solar Energy, 196 (2020) 540-548.
  39. Xu, P., Miao, C., Cheng, K., Ye, K., Yin, J., Cao, D., Zhang, X., ‘‘High electrochemical energy storage performance of controllable synthesis of nanorod Cu1. 92S accompanying nanoribbon CuS directly grown on copper foam’’, Electrochimica Acta, 214 (2016) 276-285.
  40. ChongYeon, P. A. R. K., Ghosh, T., ZeDa, M. E. N. G., Kefayat, U., Vikram, N., WonChun, O. H.,‘‘Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light’’, Chinese Journal of Catalysis, 34 (2013) 711-717.
  41. Yu, S., Liu, J., Zhu, W., Hu, Z. T., Lim, T. T., Yan, X., ‘‘Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation’’, Scientific reports, 5 (2015) 1-12.
  42. Zhang, Y. Q., Zhang, B. P., Ge, Z. H., Zhu, L. F., Li, Y., ‘‘Preparation by solvothermal synthesis, growth mechanism, and photocatalytic performance of CuS nanopowders’’,European Journal of Inorganic Chemistry (2014) 2368-2375.
  43. Ahmed, K. B. A., Anbazhagan, V., ‘‘Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish’’, RSC advances, 7 (2017) 36644-36652.
  44. Wang, H. Y., Hua, X. W., Wu, F. G., Li, B., Liu, P., Gu, N., Chen, Z., ‘‘Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications’’, ACS applied materials & interfaces, 7 (2015) 7082-7092.
  45. N Oktar, F., Yetmez, M., Ficai, D., Ficai, A., Dumitru, F., Pica, A., ‘‘Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles’’, Current topics in medicinal chemistry, 15 (2015) 1583-1588.
  46. Šupová, M., Martynková, G. S., Barabaszová, K., ‘‘Effect of nanofillers dispersion in polymer matrices: a review’’, Science of advanced materials, 3 (2011) 1-25.
  47. Ali, U., Karim, K. J. B. A., Buang, N. A.,‘‘A review of the properties and applications of poly (methyl methacrylate)(PMMA)’’,  Polymer Reviews, 55 (2015) 678-705.
  48. Lee, J. H., Jo, J. K., Kim, D. A., Patel, K. D., Kim, H. W., Lee, H. H., Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion’’, Dental Materials, 34 (2018) e63-e72.
  49. Ebnesajjad, S. (Ed.)., ‘‘Handbook of biopolymers and biodegradable plastics: properties, processing and applications,’’ William Andrew. (2012). 
  50. Pathania, D., Gupta, D., Agarwal, S., Asif, M., Gupta, V. K., ‘‘Fabrication of chitosan-g-poly (acrylamide)/CuS nanocomposite for controlled drug delivery and antibacterial activity’,  Materials Science and Engineering: C, 64 (2016) 428-435.
  51. Roy, S., Rhim, J. W., ‘‘Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films’’, International Journal of Biological Macromolecules, 164 (2020) 37-44.
  52. Akple, M. S., Low, J., Wageh, S., Al-Ghamdi, A. A., Yu, J., Zhang, J., ‘‘Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures’’, Applied Surface Science, 358 (2015) 196-203.
  53. Nayak, S., Mohapatra, L., Parida, K., ‘‘Visible light-driven novel gC 3 N 4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction’’, Journal of Materials Chemistry A, 3 (2015) 18622-18635.
  54. Lang, Q., Hu, W., Zhou, P., Huang, T., Zhong, S., Yang, L., Bai, S., ‘‘Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction’’, Nanotechnology, 28 (2017) 484003.
  55. Yang, Y., Zeng, Z., Zeng, G., Huang, D., Xiao, R., Zhang, C., He, D., ‘‘Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production’’, Applied Catalysis B: Environmental, 258 (2019) 117956.
  56. Thurston, J. H., Hunter, N. M., Cornell, K. A. (2016). ‘‘Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C 3 N 4) films’’. RSC advances, 6 (48), 42240-42248..
  57. Ding, H., Han, D., Han, Y., Liang, Y., Liu, X., Li, Z., Wu, S.,‘‘Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization’’, Journal of hazardous materials, 393 (2020) 122423.
  58. Peymanfar, R., Karimi, J., Fallahi, R., ‘‘Novel, promising, and broadband microwave absorbing nanocomposite based on the graphite like carbon nitride/CuS’’, Journal of Applied Polymer Science, 137 (2020) 48430.
  59. Liu, X., Li, X., Shan, Y., Yin, Y., Liu, C., Lin, Z., & Kumar, S. S. (2020). ‘‘CuS nanoparticles anchored to gC 3 N 4 nanosheets for photothermal ablation of bacteria’’. RSC Advances, 10 (21), 12183-12191.
  60. Peymanfar, R., Selseleh-Zakerin, E., Ahmadi, A., ‘‘Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4)’’. Journal of Alloys and Compounds, 867 (2021) 159039.
  61. Mezgebe, M. M., Ju, A., Wei, G., Macharia, D. K., Guang, S., Xu, H., ‘‘Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures’’; Nanotechnology, 30 (2019) 105704.
  62. Díez-Pascual, A. M., Luceño-Sánchez, J. A., ‘‘Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives’’: A State of Art, Polymers, 13 (2021) 2105.
  63. Aldosari, M. A., Alsaud, K. B. B., Othman, A., Al-Hindawi, M., Faisal, N. H., Ahmed, R., Asharaeh, E., ‘‘Microwave Irradiation Synthesis and Characterization of Reduced-(Graphene Oxide-(Polystyrene-Polymethyl Methacrylate))/Silver Nanoparticle Nanocomposites and Their Anti-Microbial Activity’’, Polymers, 12 (2020) 1155.
  64. Peymanfar, R., Ahmadi, M., Javanshir, S., ‘‘Tailoring GO/BaFe12O19/La0. 5Sr0. 5MnO3 ternary nanocomposite and investigation of its microwave characteristics’’, Materials Research Express, 6 (2019) 085063.
  65. Jiang, L., Wang, Z., Geng, D., Wang, Y., An, J., He, J., Zhang, Z., ‘‘Carbon-encapsulated Fe nanoparticles embedded in organic polypyrrole polymer as a high performance microwave absorber’’, The Journal of Physical Chemistry C, 120 (2016) 28320-28329.
  66. Wang, Z., Guan, W., Sun, Y., Dong, F., Zhou, Y., Ho, W. K., ‘‘Water-assisted production of honeycomb-like gC 3 N 4 with ultralong carrier lifetime and outstanding photocatalytic activity’’, Nanoscale, 7 (2015) 2471-2479.
  67. Xia, P., Zhu, B., Yu, J., Cao, S., Jaroniec, M., ‘‘Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO 2 reduction’’, Journal of Materials Chemistry A5 (2017) 3230-3238.
  68. Peymanfar, R., Javidan, A., Javanshir, S., ‘‘Preparation and investigation of structural, magnetic, and microwave absorption properties of aluminum‐doped strontium ferrite/MWCNT/polyaniline nanocomposite at KU‐band frequency’’,Journal of Applied Polymer Science, 134 (2017) 45135.
  69. Zhang, X. J., Wang, G. S., Cao, W. Q., Wei, Y. Z., Liang, J. F., Guo, L., & Cao, M. S., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride’’, ACS applied materials & interfaces, 6 (2014) 7471-7478.
  70. Peymanfar, R., Afghahi, S. S. S., Javanshir, S., ‘‘Preparation and investigation of structural, magnetic, and microwave absorption properties of a SrAl1. 3Fe10. 7O19/multiwalled carbon nanotube nanocomposite in X and Ku-band frequencies’’, Journal of nanoscience and nanotechnology, 19 (2019) 3911-3918.
  71. Gupta, V. K., Pathania, D., Agarwal, S., Singh, P., ‘‘Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light’’, Journal of Hazardous Materials, 243 (2012) 179-186.
  72. Ayodhya, D., Veerabhadram, G., ‘‘Influence of g-C3N4 and g-C3N4 nanosheets supported CuS coupled system with effect of pH on the catalytic activity of 4-NP reduction using NaBH4’’, FlatChem, 14 (2019) 100088.
  73. Chen, W., Liu, T. Y., Huang, T., Liu, X. H., Zhu, J. W., Duan, G. R., Yang, X. J., ‘‘In situ fabrication of novel Z-scheme Bi2WO6 quantum dots/g-C3N4 ultrathin nanosheets heterostructures with improved photocatalytic activity’’, Applied Surface Science355 (2015) 379-387.
  74. Wang, X., Fan, J., Qian, F., Min, Y., Magnetic BiFeO 3 grafted with MWCNT hybrids as advanced photocatalysts for removing organic contamination with a high concentration’’, RSC advances6 (2016) 49966-49972.
  75. Habibi-Yangjeh, A., Mousavi, M., ‘‘Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light’’, Advanced Powder Technology, 29 (2018) 1379-1392.
  76. Tanveer, M., Cao, C., Aslam, I., Ali, Z., Idrees, F., Tahir, M., Mahmood, A., ‘‘Effect of the morphology of CuS upon the photocatalytic degradation of organic dyes’’, RSC advances, 4 (2014) 63447-63456.
  77. Anitha, S., Brabu, B., Thiruvadigal, D. J., Gopalakrishnan, C., Natarajan, T. S., ‘‘Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO’’, Carbohydrate polymers, 87 (2012) 1065-1072.
  78. Mazur, P., Skiba-Kurek, I., Mrowiec, P., Karczewska, E., & Drożdż, R., ‘‘Synergistic ROS-associated antimicrobial activity of silver nanoparticles and gentamicin against staphylococcus epidermidis’’, International journal of nanomedicine, 15 (2020)
  79. Barber, T. L., Aldinger, J., Arnold, J., Leonard, S., Ding, M., ‘‘Copper oxide nanoparticles activate Nrf2, KEAP 1, and downstream target genes in JB6 cells possibly through ROS generation and antioxidant response element (ARE) mechanisms’’, The FASEB Journal, 34 (2020) 1-1.
  80. Liu, Z., Qu, X., ‘‘New insights into nanomaterials combating bacteria: ROS and beyond’’, Science China Life Sciences, 62 (2019) 150-152.
  81. Palza, H., Antimicrobial polymers with metal nanoparticles’’. International journal of molecular sciences, 16 (2015) 2099-2116.
  82. Ma, Y., Zhang, J., Wang, Y., Chen, Q., Feng, Z., Sun, T.,‘‘Concerted catalytic and photocatalytic degradation of organic pollutants over CuS/g-C3N4 catalysts under light and dark conditions’’, Journal of advanced research, 16 (2019) 135-143.
  83. Deng, C., Ge, X., Hu, H., Yao, L., Han, C., Zhao, D.,‘‘Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities’’, CrystEngComm, 16 (2014) 2738-2745.
  84. Shu, Q. W., Lan, J., Gao, M. X., Wang, J., Huang, C. Z., ‘‘Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light’’, CrystEngComm, 17 (2015) 1374-1380.
  85. Nidheesh, P. V., Gandhimathi, R., Ramesh, S. T., ‘‘Degradation of dyes from aqueous solution by Fenton processes: a review’’, Environmental Science and Pollution Research, 20 (2013) 2099-2132.
  86. Ayodhya, D., & Veerabhadram, G., ‘‘Preparation, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CuS NPs by a green approach’’, Journal of Inorganic and Organometallic Polymers and Materials, 27 (2017) 215-230.
  87. Nurul Reffa Azyan, N., Norkhairunnisa, M., Tay, C. H., Hanim, A.,‘‘Techniques on Dispersion of Nanoparticles in Polymer Matrices: A Review’’, Pertanika Journal of Science & Technology, 25 (2017).
  88. Farazas, A., Mavropoulos, A., Christofilos, D., Tsiaousis, I., Tsipas, D., ‘‘Ultrasound assisted green synthesis and characterization of graphene oxide’’, International Journal of Nanoscience and Nanotechnology, 14 (2018) 11-17.
  89. 89. Jafari, V., Allahverdi, A., ‘‘Synthesis and characterization of colloidal nanosilica via an ultrasound assisted route based on alkali leaching of silica fume’’. International Journal of Nanoscience and Nanotechnology, 10 (2014) 145-152.