A Procedure to Analyze a CNTFET-Based ‎NOT Gate with Parasitic Elements of ‎Interconnection Lines

Document Type : Research Paper

Authors

1 ‎Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing ‎‎(STIIMA), National Research Council of Italy, 70125, Bari, Italy‎

2 ‎Electronic Devices Laboratory, Department of Electrical and Information Engineering, ‎Polytechnic University of Bari, 70126, Bari, Italy

Abstract

   In this paper we analyze an application of CNTFET in the design of NOT gate, in which parasitic elements of interconnection lines are considered. At first we study the time domain analysis of NOT gate without to consider the parasitic elements of interconnection lines, in order to compare the obtained results with those in which the parasitic elements are considered, showing how they limit the high-speed performances of CNTs.

Keywords

Main Subjects


  1. Perri, A. G., Marani, R., “CNTFET Electronics: Design Principles”, Editor Progedit, Bari, Italy, (2017).
  2. Gelao, G., Marani, R., Diana, R., Perri, G., “A Semi-Empirical SPICE Model for n-type Conventional CNTFETs”, IEEE Transactions on Nanotechnology, 10 (2011) 506-512.
  3. Marani, R., Perri, A. G., “A Compact, Semi-empirical Model of Carbon Nanotube Field Effect Transistors oriented to Simulation Software”, Current Nanoscience, 7 (2011) 245-253.
  4. Marani, R., Perri, A. G., “A DC Model of Carbon Nanotube Field Effect Transistor for CAD Applications”, International Journal of Electronics, 99 (2012) 327-444.
  5. Marani, R., Gelao, G., Perri, A. G., “Comparison of ABM SPICE library with Verilog-A for Compact CNTFET model implementation”, Current Nanoscience, 8 (2012) 556-565.
  6. Marani, R., Gelao, G., Perri, A. G., “Modelling of Carbon Nanotube Field Effect Transistors oriented to SPICE software for A/D circuit design”, Microelectronics Journal, 44 (2013) 33-39.
  7. Marani, R., Perri, A. G., “Analysis of CNTFETs Operating in SubThreshold Region for Low Power Digital Applications”, ECS Journal of Solid State Science and Technology, 5 (2016) M1-M4.
  8. Marani, R., Perri, A. G., “A De-Embedding Procedure to Determine the Equivalent Circuit Parameters of RF CNTFETs”, ECS Journal of Solid State Science and Technology, 5 (2016) M31-M34.
  9. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part I: Static Analysis”, Current Nanoscience, 11 (2015) 515-526.
  10. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part II: Dynamic Analysis”, Current Nanoscience, 11 (2015) 770-783.
  11. Marani, R., Perri, A. G., “A Simulation Study of Analogue and Logic Circuits with CNTFETs”, ECS Journal of Solid State Science and Technology, 5 (2016) M38-M43.
  12. Marani, R., Perri, A. G., “Static Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 121-131.
  13. Marani, R., Perri, A. G., “Dynamic Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 277-288.
  14. Marani, R., Perri, A. G., “A Design Technique of CNTFET-Based Ternary Logic Gates in Verilog-A”, ECS Journal of Solid State Science and Technology, 8 (2019) M45-M52.
  15. Marani, R., Perri, A. G., “A Comparison of CNTFET and CMOS technology through the Design of a SRAM Cell”, ECS Journal of Solid State Science and Technology, 8 (2019) M1-M18.
  16. Gelao, G., Marani, R., Perri, A. G., “A Formula to Determine Energy Band Gap in Semiconducting Carbon Nanotubes”, ECS Journal of Solid State Science and Technology, 8 (2019) M19-M21.
  17. International technology roadmap for semiconductors 2.0, Interconnetct, (2011).
  18. Gelao, G., Marani, R., Perri, A. G., “Effects of Temperature in CNTFET-Based Design of Digital Circuits”, ECS Journal of Solid State Science and Technology, 7 (2018) M41-M48.
  19. Gelao, G., Marani, R., Perri, A. G., “Effects of Temperature on Switching Time and Power Dissipation of CNTFET-Based Digital Circuits”, ECS Journal of Solid State Science and Technology, 7 (2018) M63-M68.
  20. Marani, R., Perri, A. G., “Design and Simulation Study of Full Adder Circuit based on CNTFET and CMOS technology by ADS”, ECS Journal of Solid State Science and Technology, 7 (2018) M108-M122.
  21. International technology roadmap for semiconductors 2.0, Beyond Cmos, (2015).
  22. International technology roadmap for semiconductors 2.0, 2012 Update Overview, (2012).
  23. http://www.microwind.net/
  24. Armasu, www.tomshardware.com, (2019).
  25. http://wcalc.sourceforge.net/ (2018).
  26. Delorne, N., Belleville, M., Chilo, J., “Inductance and Capacitance Analytic Formulas for VLSI Interconnects”, Electronics Letters, 32 (1996) 996-997.
  27. Wong, S., Lee, G., Ma, D., “Modeling of interconnect capacitance, delay, and crosstalk in VLSI”, IEEE Transactions on Semiconductor Manufacturing, 13 (2000) 108-111.
  28. Sohn, Y., Lee, J., Park, H., “Empirical equations on electrical parameters of coupled microstrip lines for crosstalk estimation in printed circuit board”, IEEE Transactions on Advanced Packaging, 24 (2001) 521-527.
  29. Verilog-AMS language reference manual, Version 2.2, Accellera International, Inc., (2009).
  30. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nmRegime—Part I: Intrinsic Elements”, IEEE Transactions on Electron Devices, 62 (2015) 3061-3069.
  31. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nm Regime-Part II: Extrinsic Elements, Performance Assessment,and Design Optimization”, IEEE Transactions on Electron Devices, 62 (2015) 3070-3078.