Characterization of Nanoparticles Loaded ‎with Garlic Essential Oil and Their ‎Insecticidal Activity Against Phthorimaea ‎Operculella (Zeller) (PTM) ‎‎(Lepidoptera: Gelechiidae)‎

Document Type : Research Paper


1 ‎Pests & Plant Protection Department- National Research Centre, Cairo 12622, Egypt

2 Pesticide Formulation Research, Department. Central Agriculture pesticides Laboratory, ‎Agricultural Research Center, Al-Sabahia, Alexandria, Egypt


   The aim of this work was to encapsulate garlic essential oil into solid lipid nanoparticles (SLNs) to enhance its insecticidal activity against potato tuber moth larvae Phthorimaea operculella (Zeller) (PTM) (Lepidoptera: Gelechiidae). Garlic essential oil loaded into solid lipid nanoparticles (GO-SLNs) was prepared by ultrasonic-solvent emulsification technique, the encapsulation efficiency and loading capacity of encapsulated oil were determined. The morphology of produced nanocapsules was characterized using transmission electron microscopy (TEM). The chemical composition of the tested oil free and loaded-SLNs was evaluated using GC/MS analysis. The results showed that the abundance and content of the major phytochemicals did not show significant difference between free and nano-encapsulated oil when analyzed by GC/MS. Laboratory bioassay indicated that GO-SLNs was more effective than free oil on both larval and pupal development as well as it affected the adult longevity. Field-laboratory experiment was conducted to show direct and residual effects of garlic oil free and post loading against the 1st larval instar of the pest in terms of toxicity and stability. Results showed that GO-SLNs was more stable under field conditions and gave a high percentage of mortality at two concentrations used even after maximum time interval (5 days). Results of this study indicated that nanoformulation of GO-SLNs can be used effectively to control larvae of Ph. operculella.


Main Subjects

  1. Desneux, N., Decourtye, A., Delpuech, J. M., "The sublethal effects of pesticides on beneficial arthropods", Rev. Entomol., 52 (2007) 81-106.
  2. Adel, M. M., Atwa, W. A., Hassan, M. L., Salem, N. Y., Farghaly, D. S., Ibrahim, S. S. "Biological Activity and Field Persistence of Pelargonium graveolens (Geraniales: Geraniaceae) loaded Solid Lipid Nanoparticles (SLNs) on Phthorimaea operculella (Zeller) (PTM) (Lepidoptera: Gelechiidae)", International Journal of Science and Research, 4 (11) (2015) 514-520.
  3. Sharaby, A., Abdel-Rahman, H., Moawad, S., "Biological effects of some natural and chemical compounds on the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae)", Saudi Journal of Biological Sciences, 16 (2009) 1-9.
  4. Isman, M. B., Akhtar, Y., "Plant natural products as a source for developing environmentally acceptable insecticides". In: Ishaaya, I., Nauen, R., Horowitz, A. R. (Eds.), Insecticides Design Using Advanced Technologies. Springer-Verlag, Berlin, (2007) 235–248.
  5. Park, I. K., Shin, S. C., "Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus Kolbe)", J Agric Food Chem., 53 (2005) 4388–4392.
  6. Siddig, S. A., "A proposed pest management program including neem treatments for combating potato pests in Sudan", Proc. Third Int. Neem Conf., Nairobi, Kenya, (1986) 449-459.
  7. Kroschel, , Koch, W., "Studies on the use of chemicals, botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores", Crop Protection, 15 (2) (1996) 197-203.
  8. Abd El-Aziz, M. F., "Bioactivities and Biochemical Effects of Marjoram Essential Oil used against Potato Tuber Moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) ", Life Science Journal, 8(1) (2011) 288-297.
  9. Regnault-Roger, C., Vincent, C., Arnason, J. T., "Essential oils in insect control: low risk products in a high-stakes World", Rev. Entomol., 57 (2012) 405–424.
  10. Ghormade, V., Deshpande, M. V., Paknicar, K. M., "Perspectives for nano biotechnology enabled protection and nutrition of plants", Biotechnology Advances, 29 (6) (2011) 792-803.
  11. Nagpal, B. N., Srivastava, A., Valecha, N. A., Sharma, V. P., "Repellent action of neem cream against culicifacies and Cx. Quinquefasciatus", Current Science, 80 (2001) 1270-1271.
  12. Kumari, A., Yadav, S.K., Yadav, S.C., "Biodegradable polymeric nanoparticles based drug delivery systems". Colloids and Surfaces, 75(1) (2010)1-18.
  13. Anjali, C. H., SudheerKhan, S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A., Chandrasekaran, N., "Formulation of water-dispersible nanopermethrin for larvicidal applications", Environ. Saf., 73 (2010) 1932-1936.
  14. Solomon, B., Sahle, F. F., Gebre-Mariam, T., Asres, K., Neubert, R. H. H., "Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies", J. Pharm. Biopharm., 80 (2012) 61–66.
  15. El Wakeil, N. E., Alkahtani, S., Gaafar, N., "Is Nanotechnology a Promising Field for Insect Pest Control in IPM Programs? In New Pesticides and Soil Sensors", 1st Edition, Academic Press, (2017).
  16. Yang, F. L., Li, S. G., Zhu, F., Lei, C. L., "Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)", Agric. Food Chem., 57 (2009) 10156-10162.
  17. Adel, M. M., Salem, N. Y., Abdel-Aziz, N. F., Ibrahim, S. S., "Application of new nano pesticide Geranium oil loaded-solid lipid nanoparticles for control the black cutworm Agrotis ipsilon (Hub.) (Lepi., Noctuidae)", Eurasia J. Biosci.,13 (2019) 1453-1461.
  18. Bhattacharyya, A., Bhaumik, A., Usha Rani, P., Mandal, S., Epidi, T. T., "Nano-particles- A recent approach to insect pest Control", African Journal of Biotechnology, 9 (24) (2010) 3489-3493.
  19. Wissing, S. A., Mäder, K., Müller, R. H., "Prolonged efficacy of the insect repellent lemon oil by incorporation into solid lipid nanoparticles (SLN™)", Third World Meeting APGI/APV; April 3-6, 2000; Berlin, Germany, Mainz, Germany: APV; 2000:439Y440.
  20. Kelidari, H. R., Moemenbellah-Fard, M. D., Morteza-Semnani, K., Amoozegar, F., Shahriari-Namadi, M., Saeedi, M., Osanloo, M., "Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi", Parasit. Dis., 45 (2021) 101–108.
  21. El-Sinary, N. H., "Magnitude and applicability of gamma-irradiation and controlling atmospheres to minimize the hazards to potato tuber moth, Phthorimaea operculella (Zeller)", Ph.D. thesis Fac. Agric. Cairo Univ., Egypt, (1995).
  22. Siekmann, B., Westesen, K., "Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions". J. Pharm. Biopharm., 43 (1996) 104-9.
  23. Asnawi, S., Abd Aziz, A., Abd Aziz, R., Khamis, A. K., "Formulation of geranium oil loaded solid lipid nanoparticles for mosquito repellent application". Journal of Chemical and Natural Resources Engineering, 2 (2008) 90-99.
  24. Tiyaboonchai, W., Tungpradit, W., Plianbangchang, P., "Formulation and characterization of curcuminoids loaded solid lipid nanoparticles", J. Pharm., 337 (2007) 299–306.
  25. Nayak, A. P., Tiyaboonchai, W., Patankar, S., Madhusudhana, B., Souto, E.B., "Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment", Colloids and Surfaces B: Biointerfaces, 81(2010) 263–273.
  26. Mansour, H. M., Safeya, H. A., Nagwa, Y. S., Amany, R. R., "Evaluation of the susceptibility of different corn varities towards Aphid Rhopalosiphum maidis (Fitch) infestation", Ent. Soc. Egypt, 78 (2000) 205-216.
  27. Abbott, W., "A method for computing the effectiveness of an insecticide", Econ. Entomol., 18 (1925) 265–267.
  28. Koul, O., Singh, R., Kaur, B., Kanda, D., "Comparative study on the behavioral response and acute toxicity of some essential oil compounds and their binary mixtures to larvae of Helicoverpa armigera, Spodoptera litura and Chilo partellus", Industrial Crops and Products, 49 (2013) 428-436.
  29. Moradi, S., Barati, A., "Essential Oils Nanoemulsions: Preparation, Characterization and Study of Antibacterial Activity against Escherichia Coli", J. Nanosci. Nanotechnol., 15 (2019) 199-210.
  30. Werdin-Gonzalez, J. O., Gutiérrez, M. M., Ferrero, A. A., Band, B. F., "Essential oils nanoformulations for stored-product pest control-Characterization and biological properties", Chemosphere, 100 (2014) 130–138.
  31. Rassouli, A., Al-Qushawi, A., "Lipid-based nanoparticles as novel drug delivery systems for antimicrobial agents", J. Vet. Sci. Technol., 10(2) (2018) 1–16.
  32. Garces, A., Amaral, M., Lobo, J. S., Silva, A., "Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review", J. Pharm. Sci., 112 (2018) 159–167.
  33. Yadav, N., Khatak, S., Sara, U. S., "Solid lipid nanoparticles-a review", J. Appl. Pharm., 5 (2013) 8–18.
  34. Plata-Rueda, A., Martínez, L., Santos, M., Fernandes, F., Wilcken, C., Soares, M., Serrão, J., Zanuncio, J., "Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae)", Sci Rep 7 (2017) 46406.
  35. Hamada, H. M., Awad, M., El-Hefny, M., Moustafa, M. A. M., "Insecticidal Activity of Garlic (Allium sativum) and Ginger (Zingiber officinale) Oils on the Cotton Leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae)", African Entomology, 26(1) (2018) 84-94.
  36. Adel, M. M., Yoseif, N. S., Ibrahim, S. S., "Laboratory and field studies of geranium oil and GO-SLNs against the cotton leaf worm Spodoptera littoralis (boisd.) (Lep., Noctuidae)", International Review of Humanities and Scientific Research, (2018) 272-295.
  37. Nenaah, G. E., "Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst)", Industrial Crops and Products, 53 (2014) 252- 260.
  38. Zeinali, S., Nasirimoghaddam, S., Sabbaghi, S., "Investigation of the Synthesis of Chitosan Coated Iron Oxide Nanoparticles under Different Experimental Conditions", J. Nanosci. Nanotechnol., 12 (3) (2016) 183-190.
  39. Margulis-Goshen, K., Magdassi, S., "Nanotechnology: An Advanced Approach to the Development of Potent Insecticides", In: Ishaaya I, Horowit,z AR, Palli SR. (eds.) Advanced Technologies for Managing Insect Pests. Dordrecht: Springer, (2012).
  40. Mahdavi, V., Rafiee-Dastjerdi, H., Asadi, A., Razmjou, J., Achachlouei, B., "Evaluation of Lippia citriodora essential oil nanoformulation against the lepidopteran pest Phthorimaea operculella Zeller (Gelechiidae)", International Journal of Pest Management, (2020). DOI: 10.1080/09670874.2020.1800859.
  41. Ziaee, M., Moharramipour, S., Mohsenifar, A., "Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum", Appl. Entomol., 138(10) (2014) 763–771.
  42. Suthisut, D., Fields, P., Chandrapatya, A., "Fumigant toxicity of three essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids". Stored Prod. Res., 47 (2011) 222-230.
  43. Souguir, S., Chaieb, I., Ben Cheikh, Z., Laarif, A., "Insecticidal activities of essential oils from some cultivated aromatic plants against Spodoptera littoralis (Boisd.)", Plant Prot. Res., 53 (4) (2013) 388-391.
  44. Sharaby, A., Abdel Rahman, H., Abdel-Aziz, S. S., Moawad, S.S., "Natural Plant Oils and Terpenes as Protector for the Potato Tubers against Phthorimaea operculella Infestation by Different Application Methods", Ecologia Balkanica, 6 (1) (2014) 45-59.
  45. Abdel Rahman, S. M., Hegazy, E. M., Elwey, A. E., "Direct and latent effects of two chitin synthesis inhibitors to Spodoptera littoralis larvae (Boisd)", American-Eurasian J.Agric. Environ. Sci., 2 (4) (2007) 457-464.
  46. El-Sheikh, E. A., Aamir, M. M., "Comparative effectiveness and field persistence of insect growth regulators on a field strain of the cotton leafworm, Spodoptera littoralis, Boisd (Lepidoptera:Noctuidae)", Crop Protection, 30 (2011) 645-650.
  47. Kodjo, T. A., Gbe´nonchi, M., Sadate, A., Komi, A., Yaovi, G., Dieudonne, M., Komlam, S., "Bio-insecticidal effects of plant extracts and oil emulsions of communis on the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) under laboratory and semi-field conditions", J. Appl. Biosci., 43 (2011) 2899-2914.
  48. Frederiksson, S. A., Hulst, A. G., Artursson, E., de Jong, Ad. L., Nilsson, C., van Baar, B. L. M., "Forensic Identification of Neat Ricin and of Ricin from crude Castor Bean Extracts by Mass Spectrometry", Analytical Chemistry, 7 (2005) 1545-1555.
  49. El-Nikhely, N., Helmy, M., Saeed, H. M., Shama, L. A. A., El-Rahman, Z. A., "Ricin A chain from Ricinus sanguineus: DNA Sequence, structure and toxicity", Protein Journal, 26 (2007) 481-489.