Comparative Analysis of Noise in Current ‎Mirror Circuits based on CNTFET and MOS ‎Devices

Document Type : Research Paper

Authors

1 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing ‎‎(STIIMA), National Research Council of Italy‎

2 Electronic Devices Laboratory, Department of Electrical and Information Engineering, ‎Polytechnic University of Bari, Italy

Abstract

   In this paper we study an application of CNTFET in the design of current mirrors, key components of analogue circuits, in order to examine the noise behavior of  CNTFETs. We compare the CNTFET with a MOSFET of comparable scale and we present the results obtained using simulation for two different current mirror circuits, each time with different current values. To achieve this goal we use a semi-empirical compact CNTFET model, already proposed by us, including noise source contributions, and the BSIM4 model for MOS device. After the simulation of the I-V curves, the differential output resistance and the output impedance at various frequencies, we present the spectral density of output noise current, obtaining for all proposed cases that the output noise current is always higher for the CNTFET than for the MOS device.

Keywords

Main Subjects


  1. Perri, A. G., Marani, R., “CNTFET Electronics: Design Principles”, Editor Progedit, Bari, Italy, (2017).
  2. Gelao, G., Marani, R., Diana, R., Perri, A. G., “A Semi-Empirical SPICE Model for n-type Conventional CNTFETs”, IEEE Transactions on Nanotechnology, 10 (2011) 506-512.
  3. Marani, R., Perri,  A. G., “A Compact, Semi-empirical Model of Carbon Nanotube Field Effect Transistors oriented to Simulation Software”, Current Nanoscience, 7 (2011) 245-253.
  4. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part I: Static Analysis”, Current Nanoscience, 11 (2015) 515-526.
  5. Gelao, G., Marani, R., Pizzulli, L., Perri, A. G., “A Model to Improve Analysis of CNTFET Logic Gates in Verilog-A-Part II: Dynamic Analysis”, Current Nanoscience, 11 (2015) 770-783.
  6. Marani, R., Perri, A. G., “A Simulation Study of Analogue and Logic Circuits with CNTFETs”, ECS Journal of Solid State Science and Technology, 5 (2016) M38-M43.
  7. Marani, R., Perri, A. G., “Static Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 121-131.
  8. Marani, R., Perri, A. G., “Dynamic Simulation of CNTFET-based Digital Circuits”, International Journal of Nanoscience and Nanotechnology, 14 (2018) 277-288.
  9. Marani, R., Perri, A. G., “Comparison of CNTFET and MOSFET Noise Performance through the Design of Basic Current Mirror”; International Journal of Research and Reviews in Applied Sciences, 46(1) (2021) 21-29.
  10. S. Datta, S., “Cambridge Studies in Semiconductor Physics and Microelectronic Engineering 3.”, New York: Cambridge University Press, (1995).
  11. Prégaldiny, F., Lallement, C., Diange, B., Sallese, M., Kammerer, J. B., “Compact Modeling of Emerging Technologies with VHDL-AMS. In Huss, S. A. (ed). Advances in Design and Specification Languages for Embedded Systems. Dordrecht: Springer Netherlands, (2007).
  12. Allen, P. E., Holberg, D. R., “CMOS Analog Circuit Design”, Oxford University Press, United Kingdom, (2013).
  13. http://bsim.berkeley.edu/models/bsim4/, BSIM Group, Berkeley, University of California, USA, (2020).
  14. Marani, R., Gelao, G., Perri, A. G., “A Compact Noise Model for C-CNTFETs”, ECS Journal of Solid State Science and Technology, 9 (2017) M118-M126.
  15. Van der Ziel, A., “Noise in Solid State Devices and Circuits”, Ed. Wiley, New York, (1986).
  16. Landauer, G. M., Gonzalez, J. L, “A compact noise model for carbon nanotube FETs”, Proceedings of International Semiconductor Conference Dresden-Grenoble (ISCDG), (2012).
  17. Navid, R., Jungemann, C., Lee, T. H., Dutton, R. W., “High-frequency noise in nanoscale metal oxide semiconductor field effect transistors”, Journal of Applied Physics, 101 (2007) 124501.
  18. Betti, A., Fiori, G., Iannaccone, G., “Shot Noise Suppression in Quasi-One-Dimensional Field-Effect Transistors”, IEEE Transactions on Electron Devices, 56(9), (2009) 2137-2143.
  19. Lin, Y. M., Appenzeller, J., Knoch, J., Chen, Z., Avouris, P., “Low-Frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes”, Nano Letters, 6(5) (2006) 930-936.
  20. Hooge, F. H., “1/f Noise Sources”, IEEE Transactions on Electron Devices, 41(2) (1994) 1926-1935.
  21. Marani, R., Perri,  A. G., “A Review on the study of Temperature Effects in the Design of A/D Circuits based on CNTFET”, Current Nanoscience, 15 (2019) 471-480.
  22. Marani, R., Perri, A. G., “Temperature Dependence of I-V Characteristics in CNTFET Models: A Comparison”, International Journal of Nanoscience and Nanotechnology, 17(1) (2021) 33-39.
  23. Marani, R., Perri, A. G., “Effects of Parasitic Elements of Interconnection Lines in CNT Embedded Integrated Circuits”, ECS Journal of Solid State Science and Technology, 9 (2020).
  24. Marani, R., Perri, A. G., “Impact of Technology on CNTFET-based Circuits Performance”, ECS Journal of Solid State Science and Technology, 9 (2020).
  25. Deng, J., Wong, H.-S. P., “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region”, .IEEE Transactions on Electron Devices, 54 (2007) 3186-3194.
  26. Deng, J., Wong, H.-S. P., “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking”, IEEE Transactions on Electron Devices, 54 (2007) 3195-3205.
  27. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nmRegime—Part I: Intrinsic Elements”, IEEE Transactions on Electron Devices, 62 (2015) 3061-3069.
  28. Lee, C-S., Pop, E., Franklin, A. D., Haensch, W., Wong, H.-S. P., “A Compact Virtual-Source Model for CarbonNanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment,and Design Optimization”, IEEE Transactions on Electron Devices, 62 (2015) 3070-3078.