Rapid Visual Detection of Imipramine, ‎Citalopram, and Sertraline by Citrate-‎Stabilized Silver Nanoparticles

Document Type : Research Paper


Institute of Advanced Research Studies in Chemical Sciences, University of Sindh, 76080, ‎Jamshoro, Pakistan


   The present study investigated the use of citrate-stabilized silver nanoparticles (Cit-AgNPs) as a colorimetric probe for the visual detection of three antidepressants imipramine, citalopram, and sertraline. Colorimetric approach relied on color change of Cit-AgNPs due to aggregation induced by antidepressants. UV-Vis spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta potential, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize Cit-AgNPs before and after the reaction with antidepressants. It was found that surface plasmon resonance band of Cit-AgNPs centered at 400 nm was red shifted with concomitant color change from yellow to reddish brown, dark green, and red due to addition of imipramine, citalopram, and sertraline, respectively. Colorimetric response was linearly related to antidepressants concentration over the calibration range of 2-10 µg mL-1 with detection limits of 0.40, 0.25, and 0.39 µg mL-1 for imipramine, citalopram, and sertraline, respectively. Besides this, the proposed sensing strategy is capable of detecting the cited antidepressants in pharmaceutical preparations, spiked, and real deproteinized blood and urine samples without requiring light sensitive dyes, complicated equipment and organic co-solvents.


Main Subjects

  1. Lepola, U., Arato, M., Zhu, Y., Austin, C., “Sertraline versus imipramine treatment of comorbid panic disorder and major depressive disorder”, J Clin Psychiatry., 64 (2003) 654–662.
  2. Malfará, W. R., Bertucci, C., Costa Queiroz, M. E. C., Carvalho, S. A. D., Bianchi, M. L. P., Cesarino, E. J., Crippa, J. A., Queiroz, R. H. C., “Reliable HPLC method for therapeutic drug monitoring of frequently prescribed tricyclic and nontricyclic antidepressants”, J Pharm Biomed Anal., 44 (2007) 955–962.
  3. Preskorn, S. H., Stanga, C. Y., Feighner, J. P., Ross, R., “Antidepressants: past, present and future”, Springer Science & Business Media., (2012).
  4. Ragab, G. H., Bahgat, E. A., “Development of bioanalytical HPLC method for simultaneous determination of the antialzhiemer, donepezil hydrochloride and the antidepressant, citalopram hydrobromide in raw materials, spiked human plasma and tablets dosage form”, Ann Pharm Françaises., 77 (2019) 112–120.
  5. Chen, D., Jiang, S., Chen, Y., Hu, Y., “HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive”, J Pharm Biomed Anal., 34 (2004) 239–245.
  6. Ferrarini, A., Huidobro, A. L., Pellati, F., Barbas, C., “Development and validation of a HPLC method for the determination of sertraline and three non-chiral related impurities”, J Pharm Biomed Anal., 53 (2010) 122–129.
  7. Shamsipur, M., Mirmohammadi, M., “High performance liquid chromatographic determination of ultra traces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid–liquid microextraction coupled with response surface optimization”, J Pharm Biomed Anal., 100 (2014) 271–278.
  8. Shinozuka, T., Terada, M., Tanaka, E., “Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method”, Forensic Sci Int., 162 (2006) 108–112.
  9. Mahmoud, A. M., Darwish, I. A., Khalil, N. Y., “Fluorometric study for the reaction between sertraline and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: Kinetics, mechanism and application for the determination of sertraline in tablets”, J Fluoresc., 20 (2010) 607–613.
  10. Oliveira, S. N., Ribeiro, F. W. P., Sousa, C. P., Soares, J. E. S., Suffredini, H. B., Becker, H., de Lima-Neto, P., Correia, A. N., “Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode”, J Electroanal Chem., 788 (2017) 118–124.
  11. Ghaedi, H., Afkhami, A., Madrakian, T., Soltani-Felehgari, F., “Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes”, Mater Sci Eng C., 59 (2016) 847–854.
  12. Keypour, H., Saremi, S. G., Veisi, H., Noroozi, M., “Electrochemical determination of citalopram on new Schiff base functionalized magnetic Fe3O4 nanoparticle/MWCNTs modified glassy carbon electrode”, J Electroanal Chem., 780 (2016) 160–168.
  13. Huang, S-W., Hsieh, M-M., Chang, S. Y., “Sensitive determination of sertraline by capillary     electrophoresis with dispersive liquid–liquid microextraction and field-amplified sample stacking”, Talanta., 101 (2012) 460–464.
  14. Vilela, D., González, M. C., Escarpa, A., “Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay A review”, Anal Chim Acta., 751 (2012) 24–43.
  15. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L., Mirkin, C. A., “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles”, Science., 277 (1997) 1078–1081
  16. Akhond, M., Absalan, G., Ershadifar, H., “Highly sensitive colorimetric determination of amoxicillin in pharmaceutical formulations based on induced aggregation of gold nanoparticles”, Spectrochim Acta - Part A Mol Biomol Spectrosc., 143 (2015) 223–229.
  17. Zargar, B., Hatamie, A., “Localized surface plasmon resonance of gold nanoparticles as colorimetric  probes for determination of Isoniazid in pharmacological formulation”, Spectrochim Acta - Part A Mol Biomol Spectrosc., 106 (2013) 185–189.
  18. John, T., Parmar, K. A., Kotval, S. C., Jadhav, J., “Synthesis, Characterization, Antibacterial‎ and Anticancer Properties of Silver‎ Nanoparticles Synthesized from Carica‎ Papaya Peel Extract”, International Journal of Nanoscience and Nanotechnology., 17 (2021) 23–32.
  19. Ling, J., Sang, Y., Huang, C. Z., “Visual colorimetric detection of berberine hydrochloride with silver nanoparticles”, J Pharm Biomed Anal., 47 (2008) 860–864. https://doi.org/10.1016/j.jpba.2008.04.016
  20. Solov’ev, A. Y., Potekhina, T. S., Chernova, I. A., Basin, B. Y., “Track membrane with immobilized colloid silver particles”, Russ J Appl Chem., 80 (2007) 438–442.
  21. Lewis, L., “Chemical catalysis by colloids and clusters”, Chem Rev., 93 (1993) 2693–2730.
  22. Niemeyer, C. M., “Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science”, Angew Chemie Int Ed., 40 (2001) 4128–4158.
  23. Murphy, C. J., Sau, T. K., Gole, A. M., Orendorff, C. J., Gao, J., Gou, L., Hunyadi, S. E., Li, T., “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications”, J. Phys. Chem. B., 109 (2005) 13857-13870.
  24. Khayat Sarkar, Z., Khayat Sarkar, F., “Selective Removal of Lead (II) Ion from Wastewater Using Superparamagnetic Monodispersed Iron Oxide (Fe3O4) Nanoparticles as a Effective Adsorbent”, International Journal of Nanoscience and Nanotechnology., 9 (2013) 109–114.
  25. Nezhad, M. R. H., Alimohammadi, M., Tashkhourian, J., Razavian, S. M., “Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles”, Spectrochim Acta Part A Mol Biomol Spectrosc., 71 (2008) 199–203.
  26. Palazzo, G., Facchini, L., Mallardi, A., “Colorimetric detection of sugars based on gold nanoparticle formation”, Sensors Actuators B Chem., 161 (2012) 366–371.
  27. Shen, X. W., Huang, C. Z., Li, Y. F., “Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid”, Talanta., 72 (2007) 1432–1437.
  28. Guo, L., Zhong, J., Wu, J., Fu, F., Chen, G., Zheng, X., Lin, S., “Visual detection of melamine in milk products by label-free gold nanoparticles”, Talanta., 82 (2010) 1654–1658.
  29. Vasileva, P., Donkova, B., Karadjova, I., Dushkin, C., “Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide”, Colloids Surfaces A Physicochem Eng Asp., 382 (2011) 203–210.
  30. Wang, H. Y., Li, Y. F., Huang, C. Z., “Detection of ferulic acid based on the plasmon resonance light scattering of silver nanoparticles”, Talanta., 72 (2007) 1698–1703.             
  31. Qu, J. C., Chang, Y. P., Ma, Y. H., Zheng, J. M., Li, H. H., Ou, Q. Q., Ren, C., Chen, X. G., “A simple and sensitive colorimetric method for the determination of propafenone by silver nanoprobe”, Sensors Actuators, B Chem., 174 (2012) 133–139.
  32. Laliwala, S. K., Mehta, V. N., Rohit, J. V., Kailasa, S. K., “Citrate-modified silver nanoparticles as a colorimetric probe for simultaneous detection of four triptan-family drugs”, Sensors Actuators, B Chem., 197 (2014) 254–263.
  33. Rastegarzadeh, S., Hashemi, F., “A surface plasmon resonance sensing method for determining captopril based on in situ formation of silver nanoparticles using ascorbic acid”, Spectrochim Acta - Part A Mol Biomol Spectrosc., 122 (2014) 536–541.
  34. Laghari, S., Khuhawar, M. Y., “Colorimetric detection of fluoxetine using citrate-capped silver nanoparticles”, SN Appl Sci., 2 (2020) 1–10.
  35. Sadeghi, S., Hosseinpour, M., “Sodium gluconate capped silver nanoparticles as a highly sensitive and selective colorimetric probe for the naked eye sensing of creatinine in human serum and urine”, Microchem J., 154 (2020) 104601.
  36. Balasurya, S., Syed, A., Thomas, A. M., Marraiki, N., Elgorban, A. M., Raju, L. L., Das, A., Khan, S. S., “Rapid colorimetric detection of mercury using silver nanoparticles in the presence of methionine”, Spectrochim Acta Part A Mol Biomol Spectrosc., 228 (2020)117712
  37. Khalkho, B. R., Kurrey, R., Deb, M. K., Shrivas, K., Thakur, S. S., Pervez, S., Jain, V. K.,  “L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples”, Heliyon., 6 (2020) e03423.
  38. Salem, J. K., Draz, M. A., “Selective colorimetric nano-sensing solution for the determination of phosphate ion in drinking water samples”, Int J Environ Anal Chem., (2020) 1–10.
  39. Salem, J. K., Draz, M. A., “Synthesis and application of silver nanorods for the colorimetric detection of sulfate in water”, Inorg Chem Commun., 116 (2020) 107900.
  40. Rawat, K. A., Basu, H., Singhal, R. K., Kailasa, S. K., “Simultaneous colorimetric detection of four drugs in their pharmaceutical formulations using unmodified gold nanoparticles as a probe”, RSC Adv., 5 (2015) 19924–19932.
  41. Medyantseva, E. P.,, Brusnitsyn, D. V., Varlamova, R. M., Maksimov, A. A., Fattakhova, A. N., Konovalova, O. A., Budnikov, G. K., “Effect of nanostructured materials as electrode surface modifiers on the analytical capacity of amperometric biosensors”, Russ J Appl Chem., 88 (2015) 40–49.
  42. Tashkhourian, J., Afsharinejad, M., Zolghadr, A. R., “Colorimetric chiral discrimination and determination of S-citalopram based on induced aggregation of gold nanoparticles”, Sensors Actuators B Chem., 232 (2016) 52–59.
  43. Tashkhourian, J., Afsharinejad, M., “A novel colorimetric sensor for sensitive determination of R-citalopram based on the plasmonic properties of silver nanoparticles”, New J Chem., 41 (2017) 13881–13888.
  44. Lotfi, A., Manzoori, J. L., Mohagheghi, A., “Determination of sertraline in pharmaceutical and biological samples using 1, 10-phenanthroline-terbium probe and silver nanoparticles enhanced fluorescence”, J Lumin.., 185 (2017) 132–140.
  45. Jana, N. R., Gearheart, L., Murphy, C. J., “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio”, Chem Commun., (2001) 617–618.
  46. Henglein, A., Giersig, M., “Formation of Colloidal Silver Nanoparticles:  Capping Action of Citrate”, J Phys Chem B., 103 (1999) 9533–9539.
  47. Roy, P., Das, B., Mohanty, A., Mohapatra, S., “Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study”, Appl Nanosci., 7 (2017) 843–850.
  48. Patel, G. M., Rohit, J. V., Singhal, R. K., Kailasa, S. K., “Recognition of carbendazim fungicide in environmental samples by using 4-aminobenzenethiol functionalized silver nanoparticles as a colorimetric sensor”, Sensors Actuators B Chem., 206 (2015) 684–691.
  49. El Zeany, B. A., Moustafa, A. A., Farid, N. F., “Determination of imipramine in presence of iminodibenzyl and in pharmaceutical dosage form”, J Pharm Biomed Anal., 33 (2003) 775–782.
  50. Darwish, I. A., “Development and validation of spectrophotometric methods for determination of fluoxetine, sertraline, and paroxetine in pharmaceutical dosage forms”, J AOAC Int., 88 (2005) 38–45.
  51. Chen, D., Jiang, S., Chen, Y., Hu, Y., “HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive”, J Pharm Biomed Anal., 34 (2004) 239–245.
  52. El Sherbiny, D., Wahba, M. E. K., “Micellar liquid chromatographic method for the simultaneous determination of citalopram hydrobromide with its two demethylated metabolites. Utility as a diagnostic tool in forensic toxicology”, J Pharm Biomed Anal., 164 (2019) 173–180.
  53. Rao, R. N., Raju, A. N., Nagaraju, D., “Development and validation of a liquid chromatographic method for determination of enantiomeric purity of citalopram in bulk drugs and pharmaceuticals”, J Pharm Biomed Anal., 41 (2006) 280–285.
  54. Raza, A., “Development and application of spectrophotometric methods for the determination of citalopram hydrobromide in dosage forms”, Chem Pharm Bull., 54 (2006) 432–434.
  55. Skibi—Ski, R., Misztal, G., “Determination of citalopram in tablets by capillary zone electrophoresis and by direct and derivative UV-spectrophotometry”, Acta Pol Pharm., 62 (2005) 331–334.