Eco-Friendly Fabrication of ‎Fe3O4/MWCNT/ZnO Nanocomposites from ‎Natural Sand for Radar Absorbing ‎Materials

Document Type : Research Paper

Authors

1 ‎Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri ‎Malang, Indonesia ‎

2 ‎Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri ‎Jakarta, Indonesia

3 ‎Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri ‎Surabaya, Indonesia

4 ‎Department of Electrical Engineering, Universitas Mercu Buana, Indonesia

5 Department of Chemistry, Prince of Songkla University, Thailand‎

Abstract

   This paper reports on the fabrication of Fe3O4/MWCNT/ZnO nanocomposites (NCs) using natural iron sand as the primary precursor for radar absorbing materials. The addition of ZnO nanoparticles (NPs) was carried out to enhance the radar absorption performance of Fe3O4/MWCNT/ZnO NCs by improving their impedance. The X-ray diffraction patterns of Fe3O4/MWCNT/ZnO NCs demonstrated the inverse spinel cubic and hexagonal wurtzite structures for Fe3O4 NPs and ZnO NPs, respectively. The infrared spectra showed the presence of C=C, Fe-O, and Zn-O functional groups, which exhibited characteristics of MWCNT, Fe3O4, and ZnO, respectively. Such results were also confirmed by the results of energy dispersive X-ray investigation showing elements C, O, Fe, and Zn. The Fe3O4/MWCNT/ZnO NCs with superparamagnetic character decreased their saturation magnetization values due to the increasing ZnO NPs composition. Based on the optical data analysis, the bandgap energy of Fe3O4/MWCNT/ZnO NCs increased from 2.242 to 3.533 eV as the increasing ZnO NPs. Interestingly, the Fe3O4/MWCNT/ZnO NCs had a very high radar-absorbing performance ranging from 90%99%  with an optimum reflection loss of 34.2 dB at a frequency of 11.8 GHz. Thus, it implies that the Fe3O4/MWCNT/ZnO NCs provide a great opportunity as new material for developing radar-absorbing applications. Furthermore, the use of iron sand, which is economical and abundant in nature, has a very promising potential for producing large-scale antiradar materials.

Keywords


  1. Qu, S., Wu, G., Fang, J., Zang, D., Xing, H., Wang, L., Wu, H., "Dielectric and Magnetic Loss Behavior of Nanooxides in Spectroscopic Methods for Nanomaterials Characterization",Elsevier, Belanda (2017).
  2. Li, W., Lin, L., Li, C., Wang, Y., Zhang, J., "Radar Absorbing Combinatorial Metamaterial based on Silicon Carbide/Carbon Foam Material Embedded with Split Square Ring Metal", Results in Physics, 12 (2019) 278–86.
  3. Li, W., Li, C., Lin, L., Wang, Y., Zhang, J., "All-Dielectric Radar Absorbing Array Metamaterial based on Silicon Carbide/Carbon Foam Material", Journal of Alloys and Compounds, 781 (2019) 883–91.
  4. Wang, C., Chen, M., Lei, H., Yao, K., Li, H., Wen, W., Fang, D., "Radar Stealth and Mechanical Properties of a Broadband Radar Absorbing Structure", Composites Part B: Engineering, 123 (2017) 19–27.
  5. Li, W., Zhang, Y., Wu, T., Cao, J., Chen, Z., Guan, J., "Broadband Radar Cross Section Reduction by in-Plane Integration of Scattering Metasurfaces and Magnetic Absorbing Materials", Results in Physics, 12 (2019) 1964–70.
  6. Xia, R., Yin, Y., Zeng, M., Dong, H., Yang, H., Zeng, X., Tang, W., Yu, R., "High-Frequency Absorption of the Hybrid Composites with Spindle-like Fe3O4 Nanoparticles and Multiwalled Carbon Nanotubes", Nano, 11 (2016) 1650097.
  7. Panwar, R., Puthucheri, S., Agarwala, V., Singh, D., "Effect of Particle Size on Radar Wave Absorption of Fractal Frequency Selective Surface Loaded Multilayered Structures", IEEE, (2014) 186–9.
  8. Bhattacharya, P., Sahoo, S., Das, C. K., "Microwave Absorption Behaviour of MWCNT Based Nanocomposites in X-band Region", Express Polymer Letters, 7 (2013) 212–23.
  9. Mingdong, C., Huangzhong, Y., Xiaohua, J., Yigang, L., "Optimization on Microwave Absorbing Properties of Carbon Nanotubes and Magnetic Oxide Composite Materials", Applied Surface Science, 434 (2018) 1321–1326.
  10. Wei, S., Yan, R., Shi, B., Chen, X., "Characterization of Flexible Radar-Absorbing Materials based on Ferromagnetic Nickel Micron-Fibers", Journal of Industrial Textiles, 49 (2018) 58–70.
  11. Yalçın, O., Bayrakdar, H., Özüm, S., "Spin-flop Transition, Magnetic and Microwave Absorption Properties of α-Fe2O4 Spinel Type Ferrite Nanoparticles", Journal of Magnetism and Magnetic Materials, 343 (2013) 157–62.
  12. Al-Ghamdi, A. A., Al-Hartomy, O. A., Al-Solamy, F. R., Dishovsky, N., Nickolov, R., Atanasov, N., Ruskova, K., "Effect of Activated Carbon/In Situ Synthesized Magnetite Hybrid Fillers on the Microwave Properties of Natural Rubber Composites", Advanced Materials Proceedings, 2 (2017) 621–628.
  13. Ye, W., Sun, Q., Zhang, G., "Effect of Heat Treatment Conditions on Properties of Carbon-Fiber based Electromagnetic Wave Absorbing Composites", Ceramics International, 45 (2019) 5093–5099.
  14. Son, S. Y., Lee, D. H., Kim, S. D., Sung, S. W., Park, Y. S., Han, J. H., "Synthesis of Multi-Walled Carbon Nanotube in a Gas-Solid Fluidized Bed", Korean Journal of Chemical Engineering, 23 (2006) 838–841.
  15. Kordhaghi, F., Sadrnezhaad, S. K., Doulabi, M., "Synthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity", International Journal of Engineering, 30 (2017) 543–550.
  16. Mahdavi, M., Khayati, G. R., "Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying", International Journal of Engineering, 29 (2016) 1726–1733.
  17. Das, C. K., Bhattacharya, P., Kalra, S. S., "Graphene and MWCNT: Potential Candidate for Microwave Absorbing Materials. Journal of Materials Science Research", Journal of Materials Science Research, 1 (2012) 126.
  18. Wang, L., Xing, H., Liu, Z., Shen, Z., Sun, X., Xu, G., "Synthesis and Excellent Microwave Absorption Properties of ZnO/Fe3O4 /MWCNTs Composites", Nano, 11 (2016) 1650139.
  19. Vafaee, M., Ghamsari, M., S., "Preparation and Characterization of ZnO Nanoparticles by a Novel Sol–gel Route", Materials Letters, 61 (2007) 3265–3268.
  20. Ahamed, A. J., Kumar, P. V., "Synthesis and Characterization of ZnO Nanoparticles by Co-precipitation Method at Room Temperature", Journal of Chemical and Pharmaceutical Research, 8 (2016) 624–628.
  21. Liu, X. G., Geng, D. Y., Meng, H., Shang, P. J., Zhang, Z. D., "Microwave-absorption Properties of ZnO-Coated Iron Nanocapsules", Applied Physics Letters, 92 (2008) 173117.
  22. Wang, Z., Wu, L., Zhou, J., Jiang, Z., Shen, B., "Chemoselectivity-induced Multiple Interfaces in MWCNT/Fe3O4@ZnO Heterotrimers for whole X-band Microwave Absorption", Nanoscale, 6 (2014) 12298–12302.
  23. Taufiq, A., Sunaryono, Hidayat, N., Hidayat, A., Putra, E. G. R., Okazawa, A. A.,Watanabe, I., Kojima, N., Pratapa, S., Darminto., "Studies on Nanostructure and Magnetic Behaviors of Mn-Doped Black Iron Oxide Magnetic Fluids Synthesized from Iron Sand", Nano, 12 (2017) 1750110.
  24. Rahmawati, R., Melati, A., Taufiq, A., Diantoro, M., Yuliarto, B., Suyatman, S., Nugraha, N., Kurniadi, D., "Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand using Sonochemical Route", IOP Conference Series: Materials Science and Engineering, 202 (2017) 012013.
  25. Sobahi, T. R. A., Abdelaal, M. Y., Mohamed, R. M., Mokhtar, M., "Photocatalytic Degradation of Methylene Blue Dye in Water Using Pt/ZnO-MWCNT Under Visible Light", Nanoscience and Nanotechnology Letters, 9 (2017) 144–150.
  26. Anaraki, F. A., Keyhani, M., "The Effect of Different Dopants (Cr, Mn,‎ Fe, Co, Cu and Ni) on Photocatalytic‎ Properties of ZnO Nanostructures", International Journal of Nanoscience and Nanotechnology, 16 (2020) 59–65.
  27. Taufiq, A., Ulya, H. N., Yogihati, C. I., Sunaryono, Hidayat N., Mufti N., Soda, S., Ishida, T., "Effects of ZnO Nanoparticles on the Antifungal Performance of Fe3O4/ZnO Nanocomposites Prepared from Natural Sand", Adv. Nat. Sci.: Nanosci Nanotechnol, 11 (2020) 045004.
  28. Rahmawati, R., Taufiq, A., Sunaryono, Yuliarto, B., Suyatman, Nugraha, Noviandri, I., Setyorini, D. A., Kurniadi, D., "The synthesis of Fe3O4/MWCNT Nanocomposites from Local Iron Sands for Electrochemical Sensors", AIP Conference Proceedings, 1958 (2018) 020016.
  29. Fisli, A., Ariyani, A., Wardiyati, S., Yusuf, S., "Magnetic Adsorbent of Active Carbon-Fe3O4 Nanocomposite for Thorium Adsorption", Indonesian Journal of Materials Science, 13 (2012) 130490.
  30. Zhao, Z., Yang, Z., Hu, Y., Li, J., Fan, X., "Multiple Functionalization of Multi-Walled Carbon Nanotubes with Carboxyl and Amino Groups", Applied Surface Science, 276 (2013) 476–481.
  31. Aroon, M. A., Beheshti, H., Barzin, J., Shariaty-Niassar, M., "Purified and Functionalized MWCNTs: Application in CO2/CH4 Separation Using Mixed Matrix Membranes", International journal of nanoscience and nanotechnology, 14 (2018) 251–266.
  32. Wang, B., Wang, B., Wei, P., Wang, X., Lou, W., "Controlled Synthesis and Size-dependent Thermal Conductivity of Fe3O4 Magnetic Nanofluids", Dalton Transactions, 41 (2012) 896–899.
  33. Yusoff, A. H. M., Salimi, M. N., Jamlos, M. F., "Synthesis and Characterization of Biocompatible Fe3O4 Nanoparticles at Different pH", AIP Conference Proceedings, 1835 (2017) 020010.
  34. Socrates, G., "Infrared and Raman characteristic group frequencies: tables and charts", John Wiley & Sons, (2004).
  35. Munasir, N., Kusumawati, R., P., Kusumawati, D. H., Supardi, Z. A. I., Taufiq, A., Darminto, "Characterization of Fe3O4/rGO Composites from Natural Sources: Application for Dyes Color Degradation in Aqueous Solution", International Journal of Engineering, 33 (2020) 18–27.
  36. Sharma, D., Jha, R., "Transition metal (Co, Mn) Co-doped ZnO Nanoparticles: Effect on Structural and Optical Properties", Journal of Alloys and Compounds, 698 (2017) 532–538.
  37. Feng, X., Guo, H., Patel, K., Zhou, H., Lou, X., "High Performance, Recoverable Fe3O4/ZnO Nanoparticles for Enhanced Photocatalytic Degradation of Phenol", Chemical Engineering Journal, 244 (2014) 327–334.
  38. Fayemi, O. E., Adekunle, A. S., "Metal Oxide Nanoparticles/Multi-walled Carbon Nanotube Nanocomposite Modified Electrode for the Detection of Dopamine: Comparative Electrochemical Study", Journal of Biosensors & Bioelectronics, 6 (2015) 190.
  39. Aquisman, A. E., Wee, B. S., Chin, S. F., Kwabena, D.  E., Michael, K. O., Bakeh, T., Semawi, S., and Sylverster, D. P., "Synthesis, Characterization, and‎ Antibacterial Activity of ZnO‎ Nanoparticles from Organic Extract of‎ Cola Nitida and Cola Acuminata Leaf‎", International Journal of Nanoscience and Nanotechnology, 16 (2020) 73–89.
  40. Rahman, M. M., Hussain, M. M., Asiri, A. M., "Fabrication of 3-methoxyphenol Sensor based on Fe3O4 Decorated Carbon Nanotube Nanocomposites for Environmental Safety: Real Sample Analyses", Plos One, 12 (2017) e0177817.
  41. Mazhdi, M., Hossein, K. P., "Structural Characterization of ZnO and ZnO: Mn Nanoparticles Prepared by Reverse Micelle Method", International Journal of Nano Dimension, 2 (2012) 233-240.
  42. Ramezan, Z. M. H., Seifi, M., Hekmatara, H., Askari, M., B., "Preparation and study of the electrical, magnetic and thermal properties of Fe3O4 coated carbon nanotubes", Chinese Journal of Physics, 55 (2017) 1319–1328.
  43. Taufiq, A., Bahtiar, S., Sunaryono, Hidayat, N., Hidayat, A., Mufti, N., Diantoro, M., Fuad, A., Rahmawati, R., Adi, W. A., Pratapa, S., "Preparation of Superparamagnetic Zn0.5Mn0.5Fe2O4 Particle by Coprecipitation-Sonochemical Method for Radar Absorbing Material", IOP Conference Series: Materials Science and Engineering, 202 (2017) 012024.
  44. Cullity, B., D., Graham, C., D., "Introduction to Magnetic Materials", John Wiley & Sons, USA, (2008).
  45. Liu, C., Xu, Q., Tang, Y., Wang, Z., Ma, R., Ma, N., Du, P., "Zr4+ Doping-Controlled Permittivity and Permeability of BaFe12− xZrxO19 and The Extraordinary EM Absorption Power in The Millimeter Wavelength Frequency Range", Journal of Materials Chemistry C. Royal Society of Chemistry, 4 (2016) 9532–9543.
  46. Molaei, M. J., Rahimipour, M. R., "Microwave Reflection Loss of Magnetic/Dielectric Nanocomposites of BaFe12O19/TiO2", Materials Chemistry and Physics, 167 (2015) 145–151.
  47. Tang, H., Jian, X., Wu, B., Liu, S., Jiang, Z., Chen, X., He, W. W., Tian, W., Wei, Y., Gao, Y., Chen, T., Li, G., "Fe3C/Helical Carbon Nanotube Hybrid: Facile Synthesis and Spin-Induced Enhancement in Microwave-Absorbing Properties", Composites Part B: Engineering, 107 (2016) 51–58.
  48. Sun, D., Zou, Q., Wang, Y., Wang, Y., Jiang, W., Li, F., "Controllable Synthesis of Porous Fe3O4@ZnO Sphere Decorated Graphene for Extraordinary Electromagnetic Wave Absorption", Nanoscale, 6 (2014) 6557–6562.
  49. Lu, M. M., Cao, W., Q., Shi, H. L., Fang, X. Y., Yang, J., Hou, Z. L., Wang, W. Z., Yuan, J., Cao, M. S., "Multi-Wall Carbon Nanotubes Decorated with ZnO Nanocrystals: Mild Solution-Process Synthesis and Highly Efficient Microwave Absorption Properties at Elevated Temperature", Journal of Materials Chemistry A : Royal Society of Chemistry, 2 (2014) 10540–10547.
  50. Idris, F. M., Hashim, M., Abbas, Z., Ismail, I., Nazlan, R., Ibrahim, I. R., "Recent Developments of Smart Electromagnetic Absorbers based Polymer-Composites at Gigahertz Frequencies", Journal of Magnetism and Magnetic Materials, 405 (2016) 197–208.
  51. Abbas, S. M., Dixit, A. K., Chatterjee, R., Goel, T. C., "Complex permittivity, Complex Permeability and Microwave Absorption Properties of Ferrite–Polymer Composites", Journal of Magnetism and Magnetic Materials, 309 (2007) 20–24.