Design of Encoder Circuit Using Layered ‎NAND and NOR Gates in Quantum Dot ‎Cellular Automata ‎

Document Type : Research Paper


1 ‎Department of Electronics & Communication Engineering, Institute of Engineering & ‎Management, Salt Lake, Kolkata, West Bengal 700091, India‎

2 ‎Department of Electronics & Communication Engineering, University of Engineering & ‎Management, Newtown, Kolkata, West Bengal 700160, India‎


   Quantum dot cellular automata or QCA represents a new methodology of quantum computing with the potential for higher performance over existing devices.It adds necessary features such as enhanced speed, smaller size and lower power consumption in comparison to existing CMOS based technology. Based on this study the proposed paper designed three different kinds of encoder circuits using QCA technology. Following paper used layered 2-input NAND gate and NOR gates to design 4 to 2 encoder, priority encoder and octal to binary encoder circuits. The paper also showed the cell count, area, length, breadth & latency calculations for the designed encoder circuits. Proposed circuits are compared with the previously suggested designs in terms of area consumption and cell count. All the circuits designed without majority gate circuit. Potential energy for the designed circuits also calculated to check the stable output and reliability of the circuits.


  1. Delgado, C., Pérez, Cheung. D., “Local unitary quantum cellular automata”, Phys. Rev, 76(3) (2007) 23-31.
  2. Lent, C. S., Tougaw, P. D., Porod, W., Bernstein, G. H., “Quantum cellular automata", Nanotechnology, 4(1) (1993) 49–57.
  3. Liu, W., O’Neill, M., Swartzlander, Earl. E. Jr., “Design of Semiconductor QCA Systems”, Artech House, (2013).
  4. Amlani, I., Orlov, A. O., Lent, C. S. S., Gregory, L., Bernstein, G. H., “Digital logic gate using quantum-dot cellular automata”, Science, 284(5412) (1999) 289–291.
  5. Orlov, A. O., Amlani, I., Toth, G., Lent, C. S., “Experimental demonstration of a binary wire for quantum-dot cellular automata”, Applied Physics Letters, 74(19) (1999) 2875–2877.
  6. Amlani, L., Orlov, A. O., Kummamuru, Ravi, K., Bernstein, G. H., “Experimental demonstration of a leadless quantum-dot cellular automata cell”, Applied Physics Letters, 77(5) (2000) 738–740.
  7. Amlani, L., Orlov, Alexei, O., Kummamuru, Ravi, K., Ramasubramaniam, R., “Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata”, Applied Physics Letters, 77(2) (2000) 295–297.
  8. Khaetskii, V. A., Nazarov, V. Y., “Spin relaxation in semiconductor quantum dots”, Physical Review B, 61(19) (2000) 12639–12642.
  9.  Single, C., Augke, R., Prins, F. E., Wharam, D. A., Kern, D. P., “Towards quantum cellular automata operation in silicon: transport properties of silicon multiple dot structures”, Super lattices and Microstructures, 28(5) (2000) 429–434.
  10. Smith, C. G., Gardelis, S., Rushforth, A. W., Crook, R., Cooper, J., Ritchie, D. A., Linfield, E. H., Jin, Y., Pepper, M., “Realization of quantum-dot cellular automata using semiconductor quantum dots”, Super lattices and Microstructures, 34(3) (2003) 195–203.
  11. Lu, Y., Lent, C. S., “Theoretical study of molecular quantum dot cellular automata”, In Proceedings of the 10th International Workshop on Computational Electronics (IWCE-10), (2004) (pp 118–119).
  12. Lu, Y., Liu,  Mo., Lent, C., “Molecular quantum-dot cellular automata from molecular structure to circuit dynamics”, Journal of Applied Physics, 102(3) (2007) 034311-1-034311-7.
  13. Bernstein, G. H., “Quantum-dot cellular automata: computing by field polarization”, In DAC ’03: Proceedings of the 40th annual Design Automation Conference, (2003) (pp 268–273).
  14. Ilanchezhian, P., Parvathi, R. M. S., “Analysis and design of priority encoder circuit using quantum dot cellular automata”, International Journal of Engineering & Research Technology, 2(3) (2013) 21-32.
  15. Jeon, J.-Ch., “Quantum-dot cellular automata based priority encoder using multi-layer structure”, Proceedings of The International Workshop on Future Technology FUTECH, (2017) (pp101-102).
  16. Ghosh, B., Gupta, Sh., Kumari, S., Salimath, k. A., “Novel design of combinational and sequential logical structures in quantum dot cellular automata”, Journal of Nanostructure in Chemistry, 3(15) (2013) 1-9.
  17. AL-Mamun, Md. S., Alam Miah, M. B., Al-Masud, F., “A novel design and implementation of 8-3 encoder using quantum-dot cellular automata (QCA) technology”, European Scientific Journal, 13(15) (2017) 154-164.
  18. Rabeya, M., Mahmood, M., Das, B., Bardhan, R., Tareque, Md. H., “An efficient design of 4- to – 2 encoder and priority encoder based on 3-dot QCA architecture”, International Conference on Electrical, Computer and Communication Engineering (ECCE), (2019) 1-6.
  19. Kim, T.-H., Jeon, J.-Ch., “Design of extendable QCA 4-to-2 encoder based on majority gate”, Journal of The Korea Institute of Information Security & Cryptology, 26(3) (2016) 603-608.
  20. Mukherjee, C., Sukla, A, S., Basu, S, S., Chakrabarty, Ratna., Khan, A., De, D., “Layered T full adder using quantum-dot cellular automata”, Proceedings of IEEE CONECCT, (2015).
  21. Navi,K., Chabi, M. A., Sayedsalehi, S., “A novel seven input majority gate in quantum-dot cellular automata”, IJCSI International Journal of Computer Science Issues, 9(1) (2012) 84-89.
  22. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M. Rahimi., “A new quantum-dot cellular automata full-adder”, Microelectronics Journal, 41(12) (2010) 820–826.
  23. Timler, John., Lent, S, Craig., “Power gain and dissipation in quantum-dot cellular automata”, Journal of Applied Physics, 91(2) (2002) 823-831.
  24. Fijany, A., Toomarian, B. N., “New design for quantum dots cellular automata to obtain fault tolerant logic gates”, J. Nanopart. Res. (3) (2001) 27–37.
  25. Gholamnia, R., Gholami, M., Jouibari, M., Mahdiyan, S., “Low power and low latency phase-‎frequency detector in quantum-dot ‎cellular automata nanotechnology”, International Journal of Nanoscience and Nanotechnology, 16(3) (2020) 145-152