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Abstract 

In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN 

has been investigated. NFs thermal conductivity was modeled as a function of the 

nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of 

the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers 

with 2 inputs in each layer and also training algorithms of least squares regression. The 

obtained results of the model have shown good accuracy of hybrid GMDH-PNN for 

estimating the thermal conductivity of NFs. The RMSE of the model for 24 systems containing 

211data sets was achieved 0.0224. MAPE for training and validation data setswere3.58 and 

3.2%, respectively. Also, the proposed hybrid GMDH-PNN model was compared with 

different models from the literature. The results showed that the developed model can 

successively correlate and predict the thermal conductivity of different groups of NFs. 

Moreover, a remarkable agreement for the model with the experimental data was achieved 

with respect to the other models from the literature. 

Keywords: Artificial neural network, GMDH-PNN model, Nanofluids, Thermal conductivity. 

 

1. INRODUCTION 
 

NFs are based on suspensions of 

nanoparticles in the base fluids such as 

water, propylene glycol, ethylene glycol and 

engine oil, firstly described by Choi [1].NFs 

consist of a new type of heat transfer fluid 

superior in terms of thermo-physical 

properties to those conventional fluids[1]. 

NFs are worthwhile to be applicable in 

practical heat transfer processes, due to high 

potential for heat transfer enhancement. The 

thermo-physical properties of NFs, such as 

density, viscosity and thermal conductivity 

are of significant importance in heat transfer 

application involving heat transfer fluid for 

thermal engineering[2]. Among the various 

thermo-physical properties of NFs, most 

attention was devoted to viscosity and 

thermal conductivity [3-5] in order to 

calculate theoretical heat transfer 

coefficient. Therefore, these properties 

should accurately be determined because of 

their influence on NF flow and heat transfer 

characteristics[6]. Up to now, different 

models have been developed for the 

prediction of NFs thermal conductivity, but 

these correlations can only be used under 

certain circumstances [7-13].  

Over recent years, the ANN has especially 

found a well famous tool in certain 

subfields of kinetics, thermodynamics and 

transport properties where common models 

and theories fall short to provide accurate 

predictions [14-18]. Recently, ANNs have 

been applied to the study of NFs viscosity. 

Karimi et al. [18] developed an optimized 

ANN to predict NFs viscosity. Their 
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developed model integrates the concept of 

GA into an ANN model and has a low 

MAPE of 2.48%. A diffusional neural 

network was proposed by Yousefi et al. [19] 

for the estimation of NFs viscosity with an 

overall MAPE of 3.44%. 

   The ANN and the GMDH are inductive 

approach able to establish non-linear 

connections between a set of input data and 

its output, without needing sophisticated 

theory[20]. Based on parallelism and micro-

behavior, the information is accumulated on 

iterations by an element processing network 

called neurons. These intelligent algorithms 

were developed in complex systems for 

modeling, prediction, identification and 

approximation[20]. 

   Recently, Pazuki et al.[21] developed a 

hybrid GMDH–PNN model to predict the 

partition coefficients of Penicillin G 

Acylase in polymer salt aqueous biphasic 

systems. Abdolrahimi et al.[22] proposed a 

hybrid GMDH–PNN model to investigate 

the partition coefficients of alkaloids in 

ionic liquid-based aqueous biphasic 

systems. Both studies report a considerable 

decrease in errors generated by the hybrid 

approach. 

   Maziar Hakim et al.[23] studied the 

liquid–liquid phase behavior of aromatic 

compound + liphatic compound + ionic 

liquid (IL) ternary systems by using two 

ANNs developed based on back 

propagation and hybrid GMDH. In their 

work, the obtained results by the hybrid 

GMDH model provided a near to accurate 

prediction of phase behavior with of 7.27%. 

Araújo Padilha et al.[20] investigated the 

capability of two models ANN and GMDH 

in predicting the breakthrough curves of 

rhamnolipids produced by Pseudomonas 

aeruginosa (AP029-GLVIIA) onto active 

carbon and Amberlite XAD-2. Finally, they 

concluded that ANN is a more suitable tool 

to predict the data of rhamnolipid 

breakthrough curves than GMDH model to 

the two porous adsorbents investigated, 

mainly due to the typical non-linear 

behavior. Ebtehaj et al. [24] used a GMDH 

model for estimating the discharge 

coefficient of a rectangular side orifice. 

They used five structures for the prediction 

of discharge coefficient based on different 

dimensionless group of data. The obtained 

results showed that all models estimate the 

discharge coefficient fairly accurately. Also 

their results indicated that not using Froude 

number parameter has the most effect on the 

results among the four presented 

dimensionless models which in some cases 

led to an over 10% error.  

   The goal of this research is to add basic 

information to the knowledge base and 

propose a general model for prediction of 

thermal conductivity of NFs under a wide 

range of circumstances. To this end, a 

general GMDH-PNN model was developed 

to estimate the thermal conductivity of 

twenty four different groups of NFs. These 

NFs included 6 different materials as the 

nanoparticles and 5 different base fluids. 

Systems studied include Al2O3, TiO2, CuO, 

Cu, AlN and Al as the nanoparticles and 

water, EG, EO, PG and DIW as the base 

fluids.  The GMDH–PNN correlations were 

performed on a data set with 211 

experimental data [25-34]. The fit for the 

model was determined by the regression 

coefficient (R
2
) as well as by the MAPE and 

SSE, for the training and validation data set. 

Finally, the validity and credibility of the 

proposed GMDH-PNN model was 

evaluated with the experimental data sets 

and other models [9-12] from literature. 

 

2. EXPERIMENTAL DATA 

 

The first step in the modeling of a GMDH 

neural network is compiling the database for 

training the network and evaluating the 

generality of network capability. In the 

present study, a data set with 211 

experimental values for different NFs has 

been used for the model development. 

Using the random selection method, 85% of 

the total data was used for the training of 

the model and the other was used for the 

model validation. Table 1 reports all of the 

studied systems and data sources. The range 

of the input variables (dp, T,  , kb, kp) for 
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the training and validation of the hybrid model was listed in Table 2.  

 

 

 

 

Table 1. Studied systems and data sources. 

NFs group 

number 

NFs Number 

of data 

points 

Reference 

 Base Fluid Nanoparticle 

1 DIW CuO 6 [25] 

2 DIW TiO2 6 [26] 

3 DIW Al2O3 8 [26] 

4 Water CuO 2 [26] 

5 Water Al2O3 9 [27] 

6 EG Al2O3 3 [27] 

7 Water CuO 1 [27] 

8 EG CuO 4 [27] 

9 Water Cu 2 [27] 

10 Water Al2O3 33 [28] 

11 Water Al2O3 4 [29] 

12 Water CuO 5 [29] 

13 EG CuO 4 [29] 

14 EG Cu 2 [29] 

15 Water TiO2 2 [30] 

16 EG TiO2 3 [30] 

17 Water Al2O3 19 [31] 

18 EG AlN
*
 6 [32] 

19 PG AlN 6 [32] 

20 EG Al2O3 10 [33] 

21 EO Al 10 [33] 

22 EG TiO2 6 [33] 

23 EG Al2O3 18 [34] 

24 Water Al2O3 42 [34] 

 

 

 

Table 2. Variations range of input and output of hybrid model. 

Properties name (unit) 
Properties 

 symbol 

 

Variation range 

Minimum Maximum 

Nanoparticle diameter (nm) dp 8 169 
Temperature (K) 

 
T 283.15 411.1 

Nanoparticle volume fraction (%) (%)  0.01 5 

Base fluid thermal conductivity 

(W/m.K) 

kb 0.14035 0.67995 

Nanoparticles thermal conductivity 

(W/m.K) 

kp 8.37 401 

Nanofluid thermal conductivity 

(W/m.K) 

knf 0.15854 0.77553 

 

 

 

3. GROUP METHOD OF DATA 

HANLING  
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In a network with multiple inputs and a 

single output, the relationship between the 

inputs and the output of the network can be 

estimated by VKG polynomial[35] 

according to Equation 1. 

 
^

0

1 1 1

1 1 1

       ...

M M M

i i ij i jn

i i j

M M M

ijk i j k

i j k

y a a x a x x

a x x x

  

  

  

 

 



            (1-a) 

1 2( , ,..., )MX x x x
                               (1-b) 

0 1 2( , , ,...)A a a a
                                 (1-c)

 

 

The general equation in the form of VKG 

can be simplified to a partial quadratic 

polynomials as Equation 2 consisting of 

only two variables[36]. 

 
^

0 1 2 3

2 2

4 5      

in jn in jnn

in jn

y a a x a x a x x

a x a x

   

 
              (2) 

 

During the construction of a GMDH 

network, all combinations of the inputs are 

created and as its source, each layer 

consists of nodes taking a special pair of 

inputs ( ,i jx x ). A set of coefficients, ia , is 

produced by each node. Consequently, 

based on the training data set, Equation (2) 

is estimated. Furthermore, the predicted 

and actual output values are compared 

using the testing set of data by estimating 

SSE according to Equation 3[36]: 
^

2

1

( )
N

nn

n

SSE y y


                                  (3) 

In order to determine the “best fit” values, 

the value of SSE should be minimized. 

This means that the partial derivatives of 

Equation 3 with respect to each constant 

coefficient are taken and set equal to zero 

[36]: 

0
i

SSE

a





                                                (4) 

Solving Equation 4 leads to a system of 

equations that are solved by the training set 

of data. 
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0 1 2 3 4 5[      ]A a a a a a a                            (8) 

 

(yY)TB                                                  (9) 

 

Thus the system of equations can be solved 

according to the following form[36, 37]: 

 

1 1

N N

n n

AX B
 

                                         (10) 

 

4. HYBRID GMDH-PNN MODEL 

DEVELOPMENT 

 

An ANN provides a very large complex of 

equations governing its layers and nodes 

due to its highly complicated structure. 

Moreover, the configuration of network 

(including number of layers and nodes, 

input weights and learning rates and 

random value of bias) is chosen either 

arbitrarily or manually and this does not 

guarantee the best possible network. 

   In a standard GMDH approach, all pair 

combinations of inputs are constructed and 

thus employed for the input layer of the 

network. Therefore, the produced outputs 

of the input layer are classified and 

selected as the inputs for the next layer. 

This process is repeated continuously as 

long as each subsequent layer produces a 

better result than the previous one[36]. Pair 

selection of inputs results in the exclusion 

of other variables’ effects and thus when 

the system is highly non-linear, less 
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precise nodal polynomials estimation is 

concluded. So, the original GMDH is too 

simple to model systems of high non-

linearity. 

   In order to alleviate the problems 

associated with the original approach of 

GMDH, a number of authors have 

attempted to hybridize GMDH with some 

evolutionary optimization techniques. 

Among such techniques, hybridization of 

GMDH with ANN is one of the promising 

ones. The GMDH methodology designs a 

self-organizing ANN which not only is 

able to express the system genome, so to 

speak, by means of simple polynomials, 

but also uses common optimization 

algorithms to find the most appropriate 

configuration.  

   In this method, each node can take any 

combination of input variables unless the 

order of polynomial exceeds two. 

Moreover, the input of each node can cross 

over other layers and as a result the 

complexity of the model is increased. 

Furthermore, as the number of possible 

combinations among nodes is increased, 

the developed model can better predict the 

system’s non-linearity. Therefore, 

predicted values of the hybrid GMDH-

PNN model can be estimated as follows: 
^

0

1 1 1

M M M

i i ij i jn

i i j

y a a x a x x
  

         (11) 

 

5. RESULTS AND DISCUSSION 

 

For the development of the hybrid GMDH-

PNN model, different inputs (1/dp, T,  , 

kb, kp) were employed and the NFs thermal 

conductivity was considered as the model 

output. One of the most prevalent 

problems conjunct with neural networks is 

over-fitting. In an over-fitted neural 

network, train data are accurately 

correlated. Using the random selection 

method, 85% of all data was assigned to 

the training data set and the remaining to 

the validation data set. To evaluate the 

model precision, different errors such as 

MSE, RMSE, MAE and MAPE were 

calculated according to the following 

equations: 
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
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

                      (14) 

, ,

1 ,

1
100

Exp Calc
N

nf i nf i

Exp
i nf i

k k
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N k


        (15) 

 

In this study, the structure of the hybrid 

GMDH-PNN model was developed with 2 

neural inputs in 8 layers, as shown in 

schematic Figure 1. As can be seen from 

the figure, the proposed model has one 

input layer, seven middle layers and one 

output layer. Moreover, the figure clearly 

shows some crossovers between nodes in 

different layers (dash lines) representing 

the distinct characteristic of the hybrid 

GMDH-PNN model. 

   Table 3 reports the network performance 

for the optimized hybrid model. The 

results clearly show that training and 

validation data set have the same order of 

magnitude errors. Thus, it can be said that 

the model was properly developed. Also, 

generated functions corresponding to each 

node in each layer together with the total 

correlation function for NFs thermal 

conductivity are presented in Table 4. 

   After the model development, the ability 

of the hybrid modeling approach for the 

prediction of the thermal conductivity of 

different NFs should be evaluated. So, the 

experimental and predicted values of NFs 

thermal conductivity are compared in 

Figures 2 and 3 for the training and 

validation data sets, respectively. 
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Figure 1. Architecture of the optimized 

hybrid GMDH-PNN model. 

 

As can be seen in the figures, good 

agreement between the prediction of the 

hybrid model and the experimental data is 

observed and R (correlation coefficient) 

for the training and validation sets of data 

is in the same order of magnitude. So, the 

developed hybrid model can be used for 

the prediction of NFs hermal conductivity 

data for the aforementioned NFs categories 

and any kind of NFs. In other word, this 

hybrid model can be used for any kind of 

NFs with the range of parameters 

(minimum and maximum) like Table 2. 

The hybrid model is based on particle 

diameter, temperature, nanoparticle 

volume fraction, base fluid and particle 

thermal conductivity. 

   Furthermore, the results of the proposed 

model for CuO (18 nm)/water NFs at a 

temperature of 300 K was compared with 

those of different models from the 

literature [9-12]. The experimental data for 

CuO (18 nm)/water NFs at a temperature 

of 300K was gathered from the 

literature[38]. Performance criteria of the 

GMDH-PNN model in comparison with 

the other models are presented in Table 5 

and the results are depicted in Figure 4. 

   All the input parameters for the different 

models in Figure 4 and also the 

experimental condition for the 

experimental data are as the following: T= 

300 K, dp=18nm, kb=0.613W/m.K, kp=20 

W/m. K. The results clearly show the 

reliability and accuracy of the proposed 

hybrid GMDH-PNN model in predicting 

NFs thermal conductivity in comparison 

with the other models from the literature. 

Nevertheless, the reason for the little 

deviation may be due to the particle size 

distribution. Nanoparticles have the actual 

particle size distribution in the fluid, 

whereas a number-weighted average 

particle diameter of 18 nm that was 

reported in the literature [38] was used in 

the models input in this study. 

   On the other hand, Murshed model 

accounts for the effects of particle size, 

interfacial layer thickness, volume fraction 

and thermal conductivity. Thus, the effect 

of temperature was ignored in the Murshed 

model[11]. Timofeeva model predicts the 

thermal conductivity based on effective 

medium theory and considers the particle 

shape and surface thermal resistance. This 

model cannot investigate the effect of 

temperature and particle diameter for the 

prediction of thermal conductivity [12]. 

Kumar model supposes that the thermal 

conductivity enhancement takes into 

account the Brownian motion of 

particles[9]. Therefore, this model 

expresses the particle thermal conductivity 

as a function of Brownian motion and 

assumes that the nanoparticles temperature 

is the same as fluid temperature. Prasher 

model considers the effect of the 

convection of the liquid near the particles 

due to their Brownian movement for the 

thermal conductivity prediction. Thus, this 

model considers the particle diameter and 

thermal conductivity, fluid thermal 

conductivity, temperature, interfacial 

resistance, fluid kinematic viscosity and 

particle volume fraction [10]. 
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Table 3. Performance criteria for the hybrid GMDH-PNN model. 

 MSE RMSE MAE MAPE 

Training data 0.00050 0.0224 0.01687 3.58 

Validation data 0.00049 0.0223 0.01669 3.20 

 

 

Table 4. Nodal transfer functions for hybrid GMDH–PNN model. 
Layers Neuron Functions 

 

Layer 1 

2 2
0.046054 1.021178 0.002893 1.8328 40.39 0.8703

1 b b b
a k k k         

2

2

2
-0.023795 1.532286 - 0.705609 -1.1854 (1/ ) (57 1.32065 1/ ) (1 /5 2.2733 4 )6

p p b pb b
d da k k k d   

 

 

Layer 2 

2 2

1 1 1 1
0.010632 1.276692(1/ ) 3.483926(1/ ) 1.179049 0.267325 2.079901(1/ )

p p p
b d d a a d a      

 
2 2

2 2 2 1 1 2 1
0.000572 0.509404 23.36574 0.507557 23.70922 47.06194b a a a a a a     

 
 

Layer 3 

2 2

1 1 1 1
0.03888 2.895135 41.33383 1.86639 40.35594 81.66926

b b b
c k k b b k b     

 
2 2

2 2 2 2
0.10047 4.710278 65.05415 3.833459 64.8477 129.755

b b b
c k k b b k b     

 
Layer 4 2 2

1 1 2 2 1 2
0.038249 2.475619 58.46113 1.659257 54.61134 113.2715d c c c c c c     

 
 

Layer 5 

2 2

1
0.007372 0.000143 5.842322 7 0.943805 0.068799 0.000106

p p p
e k e k d d k d      

 
2 2

2
0.006563 0.067369(1/ ) 0.355567(1/ ) 0.974713 0.026528 0.011504(1/ )

p p p
e d d d d d d     

 
Layer 6 2 2

2 2 1 1 2 1
0.013424 0.655606 47.45172 0.441436 42.10731 89.45111f e e e e e e      

 
Layer 7 2 2

0.002312 0.000127 5.75031 007 1.012251 0.002848 0.000218
p p p

g k e k f f k f      
 

Output 2 2
0.275384 0.001477 0.000002 1.185301g 0.039599g 0.000717 g

nf
k T T T      

 

 

 
Figure 2. Comparison of the experimental and modeling results for the training data set. 
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Figure 3. Comparison of the experimental and modeling results for the validation data set. 

 

 

 
Figure 4. Comparison of model predictions with the other models from the literature for 

CuO/water NFs (T= 300 K, dp=18nm, kb=0.613W/m. Kandkp=20 W/m.K). 

 

 

Table 5. Performance criteria for comparison of GMDH-PNN model with the other models  

(the experimental data for the evaluation of the models were gathered from literature [38]). 

Model MSE*10
3
 RMSE*10

2
 MAE*10

2
 MAPE 

Kumar model [9] 2.29 4.79 4.40 6.49 

Prasher model [10] 0.39 1.97 1.69 2.51 

Murshed model [11] 1.03 3.21 2.87 4.24 

Timofeeva model [12] 0.17 1.32 1.23 1.82 

GMDH-PNN (this work) 0.24 1.56 1.41 1.98 
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6. CONCLUSION 

 

A GMDH-PNN model in 8 layers with 2 

inputs in each layer was proposed to 

predict the thermal conductivity of twenty 

four common NFs (211 sets of data). The 

objective of the current study was to devise 

a hybrid GMDH-PNN model to overcome 

the limitations of ANNs.The schematic 

diagram of the developed model showed 

some crossovers between layers 

representing the distinct characteristic of 

the hybrid GMDH-PNN. The hybrid 

GMDH-PNN model can predict the 

thermal conductivity of NFsby a grand 

polynomial correlation function of 

temperature, particle thermal conductivity, 

particle diameter, particle volume fraction 

and base fluid thermal conductivity. The 

regression coefficients for the training and 

validation set of data were 0.9866 and 

0.9919, respectively. Moreover, the 

MAPEs for the training and validation sets 

of data were 3.58 and 3.20, respectively. 

This suggests that the proposed hybrid 

model can fairly represent the thermal 

conductivity of NFs. Furthermore, 

comparison of the estimated thermal 

conductivity with the experimental values 

showed excellent agreements between 

them. Also, the results showed the 

reliability and accuracy of the proposed 

hybrid model in predicting NFsthermal 

conductivity in comparison with the other 

models from literature. 

 

NOMENCLATURE 

 

A Vector of weight coefficients 

a Weight coefficient 

k Fluid thermal conductivity, W/mK 

M Number of input variables 

N
 

Number of data sets 

T Temperature, K 

X Vector of input variables 

x Input variable 

y Actual output value 
^

y  Predicted output value 

 

 

Greek Symbols 

 

  Particle volume concentration 

(volume fraction) 

 

Subscripts 

 

b Refere to base fluid property 

nf Refere to nanofluid property 

p Refere to nanoparticle property 

Superscript 

 

Calc Calculated value 

Exp Experimental value 

 

ABBREVIATIONS 

 

AI Artificial Intelligence 

AlN Aluminum Nitride 

ANN Artificial Neural Network 

DIW Deionized Water 

EG Ethylene Glycol 

EO Engine Oil 

Exp Experiment 

GA Genetic Algorithms 

GMDH Group Method of Data 

Handling 

GMDH-PNN Group Method of Data 

Handling Polynomial Neural Network 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MSE Mean Squared Error 

NFs Nanofluids 

PG Propylene Glycol 

RMSE Root Mean Squared Error 

VKG Volterra-Kolmogorov-Gabor 
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