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Abstract  
   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard 

Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to 

the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the 

living tissue, this type of computation is applied in many application areas such as medical and 

engineering. Despite these advantages, DNA computing fault is prone to error. These errors may affect 

the entire computation and lead error in final result. Design of tolerant systems is one of the hot topics in 

the field of circuit design. The error in DNA computing will appear by a change in the concentration in 

compare to a threshold. In this paper, a buffer to modify the level of concentration is introduced and the 

number of required buffers in order to reduce the overhead caused by additional buffers in system is 

investigated using normal distribution. Designed system will modify any error with 15% changes in 

output concentration level in compare to a threshold level using the proposed method, which will 

increase the reliability. 
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1. INRODUCTION  

   DNA molecules have been known as the 

basic blocks to store the codes for protein 

generation and transfer the genetic features 

through the generations, but in recent 

decades, it is found that DNA molecules 

can be used for a new kind of computation 

[1]. Leonard Adleman utilized the DNA 

molecules to solve the Hamiltonian path 

problem [2]. Adleman’s experiments show 

that complex problems can be solved using 

DNA molecules faster than silicon-based 

computers, thanks to the significantly huge 

degree of parallelism. DNA computation 

made a bridge between computer 

engineering, biological and biomedical 

sciences. The potential applications of this 

kind of processing include medical 

therapeutics, pharmacy, solving NP-

Complete/NP-Hard problems and Gen 

analysis [3] and [4]. The design methods of 

DNA nanostructures have been developed 

over the last two decades to realize well-

ordered DNA lattices to organize and 

control matter at the Nanoscale [5]. The 

following is a brief review of the literature 

and previous work on DNA-based logic 

gate design. Livstone et al. proposed a 

method of implementation for DNA-based 

AND/OR functions [6]. They claimed that 

their proposed structure, consisting of 

micro-reactors along with attached heating 

elements towards controlling DNA 

annealing process, is capable of solving the 

satisfiability problem in linear space and 

quadratic time [6]. Sakamoto et al. 

proposed the concept of localized DNA 

strand displacement, which is a mechanism 

for implementing chemical reaction 

network on a surface of a DNA Nano-

structure [7]. Localization increases the 

relative concentration of strand reaction 

thus speeding up the kinetics [8]. Qian et 

al. proposed the Seesaw logic gates in 

2009 [9] and further improved in 2011 

[10]. Their methodology applies a number 

of strands to allow for increased scalability 

compared with earlier methods. Fan et al. 

in [11] proposed a three-input label-

free/enzyme-free majority gate through 

DNA hybridization without DNA 
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replacement and enzyme catalysis; further, 

the system is capable of implementing 

various basic/cascade logic gates. 

Recently, DNA logic systems have been 

utilized successfully to detect the risky 

patterns of nucleotide based cancer 

biomarkers (microRNAs) [12] and [13]. 

Authors of [12] utilized the DNA logic 

gates as modules to create molecular 

computers with biological inputs. Modular 

circuits that recognize microRNA cancer 

biomarkers through strand hybridization 

activate computation cascades to produce 

controlled outputs. Microfluidic biochips 

provide the controlled and automated 

platforms for performing various 

biochemical procedures [14]. These chips 

are known as a promising platform for 

executing the DNA operations in a 

controlled process. In [15] discusses a 

flexible configuration platform for 

performing a DNA computation on a 

microfluidic architecture in order to realize 

basic logic structures such as switches, 

memories and logic gates; Their proposed 

design is capable of programming DNA 

strands into various Boolean problems. 

However, each technique comes with its 

own benefits and drawbacks as follows. A 

configurable DNA Architecture (DENA) 

and corresponding design methods are 

proposed in [16] to improve the feasibility 

and cascade-ability of DNA circuits that 

provides the basic concepts of configurable 

DNA architectures. However, this paper 

does not used real system. In fact, 

microarchitecture in [16] is used ideally 

and free of any fault. Therefore, electrodes 

can be used without any condition. But in 

reality this may never happen. In the real 

implementation various fault may occur in 

the processing system based on the DNA 

computing. Errors in DNA computing can 

be expressed as a reduction in 

concentration (Increase is rarely possible). 

if concentration decreases slightly, then it 

does not affect the output logic. with the 

increase in errors (concentration 

decreasing), the logic of the output may be 

changed. In this paper DNA computing 

implemented on microfluidic biochip. In 

fact, we used DENA architecture for DNA 

computing but not ideally. This paper is 

focused on the occurrence of faults that 

lead to reduce the output concentration. 

These faults are evaluated with two 

methods and some solutions are presented 

to overcome them. While the concentration 

reduction partly affectless on output logic, 

the output logic may be error-prone as 

concentration increases. The main 

concepts are addressed in the following 

section which will assist the reader to 

arrive at a better understanding of other 

sections. 

 

1.1. DNA Logic Circuits  

   As mentioned before, operation of a 

DNA circuit relates to the reactions 

occurred between DNA strands based on 

Watson-Crick complementary rules [17]. 

Each DNA strands composed of a finite set 

of Nucleotides; Adenine (A), Guanine (G), 

Thymine (T) and Cytosine (C). In DNA 

computing everything is encoded in the 

form of strands of four alphabets A, T, G, 

and C [18].  

   Various styles are proposed for DNA-

based logic gate design. However, two 

design styles are more popular; Toehold-

mediated design style and Seesaw design 

style. These two design styles are 

described in the following subsection. 

 

1.2. Toehold-Mediated Logic Gate 

Design Style 

   Yurkeet.al in [19] reported an interesting 

DNA hybridization reaction that realized 

the DNA logic gate implementation with 

better correctness and speed rather than 

existing methods. Their contribution is 

based on the fact that the merging 

probability of two complement DNA 

strands has a reverse dependency to their 

length. In other words, smaller 

complement strands have more merging 

probability than larger strands. 

   Authors of [19] used a small-length 

strand to accelerate the merging flow of 

the DNA strands and he called this strand 
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as Toehold that analogue to the primer in 

biology sciences. Using the Toehold 

strands, improves the controllability of 

DNA displacement process and hence 

reduces the DNA process time. A simple 

example of this method is shown in figure 

1. In this figure, each green arc line shows 

a single DNA strand whose direction 

represents its merging direction (from 5’ to 

3’). Labels of complement strands are 

represented by quote sign (*) and also 

Toehold strands are highlighted by red 

color. 

 

 
Figure 1. Toehold mediated strand 

displacement. 

 

    Figure 1-A shows a double strand that is 

generated by binding of strands B and 

B’C’. This double strand reacts with strand 

BC in which C is toehold strand (Figure 1-

B). At first, Toehold C is connected to its 

complementary strand C’ (Figure 1-C) and 

then strand B of BC strand replace with 

strand B in initial double strand. The 

resulting output is a single strand B and a 

double stranded BC (Figure 1-D).  

   This process is termed toehold-mediated 

strand displacement. Typical toehold 

lengths used for toehold-mediated strand 

displacement hybridization reactions range 

from 3 to 7 nucleotides. 

   Toehold-mediated strand-displacement 

enables the implementation of the DNA 

circuit without any enzymes for reactions, 

so this method is cheaper and faster than 

enzyme-based method. The drawback of 

this method is that many orthogonal strings 

are necessary for large circuit design to 

avoid unwanted reactions.  Orthogonal 

DNA strands are defined as the strands that 

cannot be merged to gather because of 

their nucleotides’ order. 

   Attachment interest of strand for 

displacement, which called strand kinetic, 

depends on the length and sequence of the 

toehold domain. This factor determines the 

speed of toehold mediated strand 

displacement reactions. Figure 2 shows the 

dependency of kinetics to length and type 

of nucleotides. In this figure, green graph 

shows the kinetics of using a maximally 

strong toehold composed of only G/C 

nucleotides, the red trace shows the 

kinetics of using a toehold composed only 

of A/T nucleotides, and the black traces 

shows the kinetics of a toehold composed 

of roughly equal numbers of all 4 

nucleotides [20]. In addition to the type of 

nucleotides, number of them are effective. 

  
Figure 2. Summary of strand displacement 

rate constants plotted against the invading 

toehold length n[20].  

 

   Moreover, according to the [19] and 

[20], the DNA reaction rate will be 

increased when the number of toehold 

domains in a single strands grows. In 

addition, domain size is effective in 

reaction rate and choice between 4 – 7 

nucleotide [20].   

 

1.3. Seesaw Logic Gate 

   Qin and Winfree proposed the Seesaw 

logic design style at 2009 [14]. A seesaw 

logic gate comprises of five kinds of 

strands; inputs, outputs, gate, threshold and 

fuel in which output strand is produced by 
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interaction between input strands with gate 

and threshold strands.  

   Seesaw gates are designed based on the 

toehold-exchange protocol. Input strands 

act catalytically, hence a single input 

strand can help release multiple output 

strands from multiple seesaw gates. The 

output strands act as inputs for the next 

seesaw gates downstream in the circuit.  

   A seesaw gate with n-input and m-

output, consists of n input strands, 3 

internal strands and m output strands. 

Internal strands include gate, threshold and 

fuel strands.  

   Figure 3 shows a simplified view of a 

single-input and single-output seesaw base 

component. The input strand (S2.T.S5) 

consists of sub-strands S2, T and S5 in 

which T is toehold. Output strand 

(S5.T.S6) consists of sub-strands S5, T and 

S6. Gate strand is a composite strand 

which consists of upper strand S5, T and 

S6 and lower strand T*, S5* and T* (a* is 

complementary of a) that S5, T and S5*, 

T* composed of a double strand. 

Threshold strand includes s2* which is a 

small portion of starting bases of S2 and 

sub-strand T* and double strand S5.S5*. 

Fuel strand is a lower strand and consist of 

three domains; S5*, T* and S7*. Fuel 

strand increases the chance of reactions 

and probability of correct output 

production. Red numbers within the nodes 

or on the wires in Figure 3 indicate relative 

concentrations of different initial DNA 

species. Negative concentration used for 

threshold due to input consumption. 

   As shown in Figure 3-B, input strand 

reacts with both gate and threshold strands 

simultaneously. Input and threshold 

reaction rate is higher than input and gate 

reaction rate that cause to output strand 

production, due to the two toehold (s2* and 

T*) that described in Part I-B. Therefore, 

threshold concentration is an effective 

parameter in output concentration control. 

In the other words, the threshold gate can 

be thought as a garbage collector that 

makes a strand unusable for further 

reactions. By using the required number of 

seesaw base components (e.g. Figure 3) 

and adjusting the concentration of the 

threshold gate, both “AND” and “OR” 

gates can be constructed [15]. The main 

advantage of Seesaw logic gates is cascade-

ability. This advantage is achieved due to 

slight loss of output concentration levels. 

 

 

 
Figure 3. Details of strands and 

operations in the seesaw base component 

system [15]. 

 

1.4. Digital Microfluidic Platforms for 

DNA Computing 

   A digital microfluidic biochips (DMFB) 

device is a platform for performing 

operations of biological assays in an 

automatic and controllable manner [21]. 

These types of chips are comprised of a 

small bed made of paper, glass, plastic or 

silicon on which various biological 

operations towards analyzing human or 

animal chemical samples, manipulating 

and detecting samples are performed. A 

DMFB can manipulate discrete droplets of 

liquids on the surface of a two-dimensional 

array of electrodes; the actuation of 

electrodes can be programmed and 

controlled through software-driven 
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electronic control unit. A typical digital 

microfluidic biochips (DMFB) device is 

comprised of two top and bottom plates; 

the top plate is a single continuous 

electrode, whereas the bottom plate 

consists of an array of electrodes. Both 

plates are covered with a dielectric layer 

and further a thin hydrophobic layer in 

order to allow actuation of droplets and 

prevent adhesion of droplets to electrodes. 

The droplets are sandwiched between the 

gap of the top and bottom plates; the gap is 

typically filled with air or a filler fluid such 

as silicon oil so that actuation of droplets 

on the array of electrodes is further 

facilitated. Figure 4 illustrates structure of 

EWOD-based digital microfluidic 

biochips. One of the main drawbacks of 

DNA computing has been historical that 

chemical reactions between the DNA 

strands are manual operations and do not 

seems to be automated easily. Recently, 

considerable research is reported on using 

the DMFBs as the execution platform of 

DNA reactions. 

 
Figure 4. Digital microfluidic biochip 

[21]. 

 

1.5. DNA-Based Micro-Architecture 

   A digital A micro-architecture defines 

the building blocks and the configuration 

scheme of the components (e.g. Resources 

and methods) to realize the target circuit. 

An efficient micro-architecture is a 

necessary requirement for any automatic or 

semi-automatic design and large scale 

DNA circuit design. In [16], a micro-

architecture (DENA) has been proposed 

enabling the large-scale DNA logic system 

design. DENA is an FPGA-induced 

architecture that consists of a two 

dimensional array of configurable logic 

blocks [22]. DENA is regular architecture 

consists of the arbitrary number of DENA 

Clusters (DC) which can be configured to 

implement a 4-input logic function. Figure 

5 shows the general structure of DENA 

micro-architecture with 2 * 2 DCs. As 

shown in this figure, each DC is 

implemented on a 3 * 3 grid of a 

microfluidic biochip. 
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Figure 5. A simplified view of the DENA 

architecture proposed in [16]. 

  

   Detailed structure and operation of this 

micro-architecture is described in [16]. We 

used the DENA [16] as the logical micro-

architecture. We made some improvements 

on DENA to increase its capabilities fault 

tolerant implementation. At the first of 

next section these improvements are 

described. The main contributions of this 

paper can be defined as follows: 

1) To design a buffer gate in modifying of 

fluctuations in concentrations: each 

buffer gate will occupy two tiles in 

microfluidic biochip which can cause 

additional system overhead, but it is 

necessary to fix errors. Therefore, the 

purpose of this paper is to use the 

minimum number of buffers in order to 

achieve the minimum error rate. 
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2) To address occurrence of a fault in 

microfluidic surface using normal 

distribution: The probability of 

occurring a fault in microfluidic 

surface is investigated using two 

different approaches. 1- occurrence of 

a fault over all chip surface using 

normal distribution model. 2- 

occurrence of a fault on each electrode 

of microfluidic using normal 

distribution model. 

   Briefly, for implementation of DNA 

computing, this paper proposed a solution 

for detecting and fixing of fault in 

microfluidic biochips 

 

2. MODIFIED MICRO-ARCHITECT-

URE 

   One of the main drawbacks of DNA 

computing has been historically that 

chemical reactions between the DNA 

strands are manual operations and do not 

seems to be automated easily. However, 

considerable successful improvements are 

reported recently on using the DMFBs as 

the execution platform of DNA reactions. 

Recently, microfluidic platforms have been 

used for various steps of the DNA 

computation. This technology reduces the 

time of DNA computations and improve 

controllability and automation of DNA 

operations [22]. Furthermore, microfluidic 

biochips can be utilized for providing 

scalability and flexibility demanded by 

large-scale DNA logic circuit designs [18]. 

In fact, microfluidics is the suitable 

platform for DNA computing. On the other 

hand, one of the challenges is the creation 

of errors which has confronted DNA 

computing with problem. Occurrence of a 

fault in DNA computing based on 

microfluidic biochips can be categorized as 

follow: 

1) Increase the probability of occurring a 

fault in unwilling reactions, which 

could be due to inadequate system 

design or incorrect selection of strands. 

In addition, this probability will rise 

with an increase in the number of 

circuit stages.  

2) Creation of fault digital microfluidic 

computing. 

   Both mentioned cases can lead 

concentration reduction in output strand 

and create fault in output logic. To 

overcome the faults caused by 

concentration reduction, this paper 

introduced a modifier buffer. In the 

following more details on this are 

presented. 

 

2.1. Modifier Buffer Design 

   Design of buffer gate has been a serious 

challenge in DNA logic gate design. We 

proposed an innovative buffer gate by 

splitting the buffer operation in two stages 

(Figure 6).  At the first stage, input strand 

reacts with threshold, gate and fuel strands 

to generate the output of stage 1, which is 

then fed into stage 2 as an input. At the 

second stage, output of the first stage 

reacts with gate to generate the final 

output.  

   Buffer gate improved concentration level 

without logic exchanged. In fact, if 

concentration decreases (logic ‘1’) or 

increases (logic ‘0’) due to the occurrence 

of error and if this change in concentration 

is less than 15% of the initial 

concentration, then the concentration can 

be returned to initial level using modifier 

buffer. It is important to note that input 

strand into buffer and output stand given 

by the second stage of buffer have the 

same Nucleotide structure. The structure of 

proposed buffer is explained in the 

following.  

   The input concentration of the first stage 

is between 750nM to 900nM (as logic ‘1’) 

or less than 250nM (as logic ‘0’), threshold 

concentration is 600nM and concentrations 

of gate1 and gate2 in step1 are 1000nM 

and 1500nM respectively. In addition, fuel 

concentration is 2000nM and convertor 

gate concentration is 1000 nM. These two 

stages are implemented in 2 distinct 

microfluidic tiles. 

 



International Journal of Nanoscience and Nanotechnology                    173 

S5 T
S7

Fuel

S1

T S2

Input

S2 T
S5

T* T*

Gate1

S2* s2* S5*

S5

T*

S5 T
S6

T* S5* T*

Gate2Thereshold

Step1

S6T S2T

S2

S1 T

Convertor Gate

+

S2S5 T

,

Input
Output

S5 T
S6

Output

S5

Step2

 

Figure 6. Internal operations of the 

proposed buffer. 

 

   As shown in Figure 6, input strand is 

S1.T.S2, threshold strand includes the 

upper strand S5 and lower strand s2.T.S5 

and gate1 consists of two strands in upper 

and lower, T.S2.T.S5 and S1.T.S5 

respectively. Moreover, strands s2 is sub-

strands of S2 and gate2 is Ts5.T.S6.      

Interactions of internal strands of buffer 

gate are illustrated in Figures 6-A and 6-B.  

   These reactions are described as follows. 

Step1: Each buffer logic gate has one 

input, two gate strands, threshold, fuel, 

representation and output strands that 

produced after all reactions. Input reacted 

with gate 1 then produced upper strand 

S2TS5, this strand quickly consumed with 

threshold strand (threshold strand consist 

of two toehold domain), therefore 

threshold concentration can control S2TS5 

concentration. Remaining S2TS5 reacted 

with Gate 2 and they produce S5TS6 

which is output strand; Fuel strand 

increases the chance of reactions to reach 

final. 

Step2: In this proposed buffer, the 

structure of input and output strands should 

be the same, but the structure of output 

strands of a buffer step1 is completely 

different from its input structure. Buffer 

step2 used for change the formation of 

output strands to the input strands of buffer 

step1(final output strand is like the first 

input strand). which is essential in order to 

avoid changes in architectural structure 

when using a buffer. The presented 

convertor structure consists of one input 

strand (S5TS6) and one gate strand 

(Convertor Gate). As shown in Figure 6-B, 

input strand reacted with lower strand of 

convertor gate to produce a double strand 

(S5.T.S2) and then output strand is 

generated which is an upper strand 

(S1.T.S2). The generated strand is a 

standard input strand. 

   These two steps are implemented on 3 

microfluidic tiles. Step1 is performed in 

one tile, then it is latched for one cycle in 

the next tile and finally step2 is performed 

in the new next tile. 

   In contrast to the benefits of using buffer 

gate, they will occupy three tiles on a 

digital microfluidic as mentioned. And in 

addition of space occupying, they will add 

three delay units to runtime computation as 

well. To reduce overhead caused by 

additional buffers, it is necessary to use 

buffers only when the concentration 

changes lead error (only to prevent the 

occurrence of error caused by 

concentration reduction). 

   To minimize the number of modifier 

buffers and thereby reduce the overhead 

caused by them, it should be noted that 

there would be no problem if the decrease 

or increase in concentration does not 

exceed 15%. Therefore, buffers will only 

be used in the computational process if the 

total number of faults exceed 15% at the 

next stage, in this case, buffers are applied 

to previous stage of calculation and modify 

the fault concentration level and 

consequently fault will not occur in the 

next stage.  

   There are two approaches to evaluate the 

occurrence of fault in system. In the first 

approach, it is assumed that in each 

electrode with a normal distribution there 

will be a fault which leads to decrease or 

increase of 0% to 15% in output 

concentration (decrease when generating 

output in logic ‘1’ and increase when 

generating output in logic ‘0’), therefore 

10% of the total electrodes in chips are in 

fault. Although this approach is not 
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accurate enough, it is very easy to 

evaluate. In the second approach, error can 

be occurred across the entire surface of 

microfluidic chip based on two-

dimensional normal distribution. In this 

case, the same as first approach, this fault 

will be between 0% and 15% of output 

concentration. In the following, both 

approaches are explained in more details. 

 

3. FAULT CALCULATION USING 

FIRST APPROACH 

   As mentioned before, in this case only 

10% of the cells have a fault between 0% 

and 15%. This fault is appeared by 

reduction of output concentration in logic 

‘1’ and increase of output concentration in 

logic ‘0’. To investigate the fault some 

assumptions are required. These 

assumptions are mentioned in the 

following and have extracted statistically 

in numerous experiments: 

1) Maximum 10% of cells have a fault at 

the surface of microfluidic chip. 

2) Error will occur by decreasing or 

increasing of 1% to 15% of the initial 

concentration. 

3) Reduction of fault which is higher than 

15% is rarely happened, but if it occurs 

then there is no way to compensate. 

 

3.1. Calculation of Minimum Number of 

Required Buffer in Order to Avoid 

Creating Modifiable Errors in System 

   As mentioned previously, with increasing 

the number of modifier buffers, system 

overhead will be increased (each modifier 

buffer consists of two stages which occupy 

three electrodes in microfluidic chip. On 

the other hand, if we do not use the 

modifier buffer then the unmodifiable 

errors will be occurred by increasing the 

modifiable errors. As already mentioned 

above, it is assumed that the cells with 

compensated error have a concentration 

reduction from 0% to 15%. After doing 

measurement, we always have data 

(numbers) which we attempt to discover 

the relationship between them or classify 

them in order to analyze them. To do this, 

we need to know how data are distributed. 

Simply, data distribution indicates how 

spread out or compact our collected data is. 

Normal distribution(Gaussian)  is one of 

the most important distribution in 

probability theory. 

   Normal distribution has two parameters, 

the mean and the standard deviation. In 

normal distribution, 68% of data are within 

one standard deviation of mean and 95% of 

data are within two standard deviation of 

mean and 99.7% of data are within three 

standard deviation of mean. As mentioned 

earlier, the compensated error range is 

between 0% and 15%, therefore the mean 

and standard deviation are 7.5 and 3.75 

respectively using the equations 1 to 4. 

 

(1) µ = (Min + Max)/2 

(2) µ = (0+15)/2 = 7.5 

(3) σ = (Max – Min)/4 

(4) σ = 15/4 = 3.75      

 

where µ and σ indicate mean and standard 

deviation respectively. We assumed that 

95% of errors are modifiable and are within 

two standard deviation of mean, therefore 

the standard deviation of 3.75 will be 

achieved. Bell curve of normal distribution 

of error is shown in Figure 7. 

   To achieve the minimum number of 

required buffers in order to prevent error in 

system, it should be noted that if the errors 

are less than the mean, then they can be 

removed (creating 7.5% concentration 

reduction) after one step (even with 

existing of error in the next step) using 

modifier buffer gate, but errors that are 

higher than the mean (creating 

concentration reduction of more than 7.5%) 

can be modified using buffers in the current 

step. Thus, according to Figure 8, errors 

(green dots) that must be modified are 

47.5% of the total number of error that 

occurred. 
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   Since we assumed that 10% of cells are 

prone to error in each process, therefore the 

number of required buffer is obtained using 

equation 5. 

(5) 10% * n * 47%   = total number 

of required buffer 

   Where n is the total number of electrodes 

at microfluidic surface. The experiment 

showed that most of the errors occurred at 

the end of the experiment time period on 

microfluidic surface, consequently it is 

clear that the buffer cells are more likely to 

be placed in the last electrodes of 

experiments. Although investigation of 

error is easy using the mentioned  

approach, but it is not accurate enough to 

calculate the number of required buffer. In 

the second approach, the number of buffers 

will be calculated more accurately using 

computer simulation. 

   To achieve the minimum number of 

required buffers in order to prevent error in 

system, it should be noted that if the errors 

are less than the mean, then they can be 

removed (creating 7.5% concentration 

reduction) after one step (even with 

existing of error in the next step) using 

modifier buffer gate, but errors that are 

higher than the mean (creating 

concentration reduction of more than 7.5%) 

can be modified using buffers in the current 

step. Thus, according to Figure 8, errors 

(green dots) that must be modified are 

47.5% of the total number of error that 

occurred. 

  Since we assumed that 10% of cells are 

prone to error in each process, therefore the 

number of required buffer is obtained using 

equation 5. 

(5) 10% * n * 47%   = total number 

of required buffer 

   Where n is the total number of electrodes 

at microfluidic surface. The experiment 

showed that most of the errors occurred at 

the end of the experiment time period on 

microfluidic surface, consequently it is 

clear that the buffer cells are more likely to 

be placed in the last electrodes of 

experiments. Although investigation of 

error is easy using the mentioned  

approach, but it is not accurate enough to 

calculate the number of required buffer. In 

the second approach, the number of buffers 

will be calculated more accurately using 

computer simulation. 

Figure 7. Normal distribution of 

concentration reduction rate in modifiable 

errors.  

Figure 8. Green dots shows the errors 

interval that must be modified by buffers. 

 

4. ERROR-CHECKING USING 

SECOND APPROACH 

   In the second approach, each electrode 

may have an error in the range of 0% to 

15%. This error rate occurs with normal 

distribution across the entire surface of 

microfluidic chip. The occurrence of error 

on the surface of microfluidic chip is 

shown in Figure 9. The error in each 

electrode will be calculated by mapping the 

vertical error graph on the surface of that 

electrode. As mentioned earlier, in order to 

perform calculation, it is essential to move 

the droplets containing DNA strands at 

level of digital microfluidic. With moving 

of droplets in level of digital microfluidic, 

we can use modifier buffer whenever the 

total number of errors in electrodes reaches 

15%. 

    Simulation of the proposed algorithms 

was investigated using Matlab (version 
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R2019a) tools. Simulation, regarding the 

various possibilities for moving was 

considered in implementing of each system 

on surface of digital microfluidic. The 

maximum number of buffers was used as 

the number of required buffer in order to 

avoid modifiable error in each system. The 

result of modifier buffer simulation and 

both error-checking approaches are 

described in the next section. 

 
Figure 9. normal distribution of the 

occurrence of error on surface of digital 

microfluidic. 

 

5. SIMULATION RESULT 

   As discussed earlier, in this paper a 

buffer is presented in order to decrease the 

number of error occurring in DNA 

computing based on digital microfluidic. 

Due to overhead caused by buffer (each 

buffer will occupy two tiles on the surface 

of microfluidic), we used two approaches 

based on normal distribution and we will 

estimate the number of buffers and their 

location. In the following section the 

simulation process and design verification 

are evaluated. 

 

5.1. Buffer Gate Simulation Result 

   In this paper, we designed a buffer gate 

to modify the output concentration level. 

As mentioned previously, in the normal 

mode when no error is occurred, the output 

concentration for logic 1 and logic 0 are 

900nm and 100nm respectively. Therefore, 

error means that the output concentration is 

less than 900nm in logic ‘1’ and more than 

100nm in logic ‘0’. The proposed buffer in 

this paper modifies the concentration of 

more than 750nm and return it back to 

more than 900nm and also modifies the 

concentration of about 150nm and return it 

back to less than 100nm. The circuit are 

modeled using the DNA descriptive 

language and simulated the descriptions 

using VisualDSD toolbox [23]. VisualDSD 

is a widely used research tool to simulate 

the DNA reactions and computes the 

density of output strands based on the 

input and internal strands of the circuits.       

VisualDSD has three possible choices for 

simulation: stochastic, deterministic, and 

JIT. In this paper, stochastic modeling was 

used because the results of stochastic 

modeling are consistent with real 

experimental results. Important simulation 

parameters are shown in Table 1. 

Simulation was done using a stochastic 

model and strand concentration listed on 

this article in related place. Rate of the 

reactions depends on toehold dissociation 

and binding rate. This rate is illustrated in 

Table 2. 

 

Table 1. Details of Simulation Parameters. 
Parameter Value 

Temperature 25 ˚C 

Strand Length 20 (nt) 

Strand’s toehold length 4 (nt) 

Strand Length 20 (nt) 

 

   Figure 10 shows the concentration of 

buffer gate output strands in step1 that are 

generated by VisualDSD. It is worth 

noting that inputs have two different 

concentrations; 150nM for logics ‘0’ and 

750nM for logic ‘1’. As can be seen in this 

figure, output concentration changes from 

0nM to 100nM for logic “0” and from 

900nM to 1000nM for logic “1” that 

makes reasonable noise margin. 

   Table 3 shows the concentration level of 

the strands output when input is changed 

from 0nm to 150nm and from 750nm to 

900nm for logic ‘0’ and ‘1’ respectively. 

As can be seen in this table, level of ‘0’ 

and ‘1’ outputs have fully acceptable 

range. 
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Table 2. Toehold Reaction Rate. 

 

 

 
  

Figure 10. Simulation result for modify 

concentration with modifier buffer. 

 

   Table 3 illustrates the output 

concentration for various range of input 

concentration. IC and OC show the 

concentration of Input concentration and 

output concentration respectively. It is 

resulted after VisualDSD simulation tool. 

Finally, column LC show the logical 

correctness of the buffer output (Logic is 

correct if LC ‘yes’). It is worth to note that 

high-concentration (>900nM) shows logic 

‘1’ and low-concentration (<100nM) 

represents logic ‘0’ in this table. Table 3 

shows that the logical output of the 

modifier buffer is correct (without error). 

 

5.2. Calculating the Number of 

Required Buffer Using First Approach 

   The number of required buffers to 

modify the output concentration level 

when an error is occurred are investigated 

in the remainder of this section. 

 

Table 3. Input and output concentration 

for modifier buffer. 

IC OC LC 

900 1000 Yes 

850 997 Yes 

800 990 Yes 

770 940 Yes 

750 914 Yes 

700 890 No 

600 708 No 

400 240 NO 

180 130 No 

150 98 Yes 

100 68 Yes 

95 62 Yes 

 

The number of buffers need to be chosen 

in such a way as to reduce the error and 

minimizes overhead for the implemented 

circuit. To do this, as mentioned in the 

previous section, there are two approaches. 

In the first approach, the number of 

required buffers which is based on the 

number of required tiles for 

implementation of circuit is calculated 

using equation 5, and is shown in table 4, 

where #tiles represents the number of 

required tiles for implementation of test 

bench with different complexity, and #buff 

indicates the number of required buffers. 

The precise location of these buffers is not 

predicted and we can only point out that 

due to the increasing number of errors in 

the final stages of calculation, it is more 

reasonable to use buffers at the final stages 

of calculation. We can also maintain a 

history of calculation in order to predict 

the location of error occurring. Then we 

can use buffers in a location with higher 

probability of error in regard to the 

prediction. 

 

Reaction type Rate 

Normal Fast 

Toehold 

dissociation 

0.1126 0.95 

Toehold binding 3 * 10 1.2 * 10 
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Table 4. number the required buffer in first 

approach 
Benchmark Complexity #IO #tiles #buffer 

C17 6 7 63 3 

C432 160 43 1638 77 

C1908 880 58 2646 124 

C3540 1669 72 8712 409 

C6288 2406 64 16380 770 

 

   Table 4 shows the physical 

implementation of IBM benchmarks on 

microfluidic biochip. The synthesized 

circuits are implemented on a 

Programmable Bio-Cell Matrix (PBCM) 

architecture [24] using SSS toolbox. As 

shown in the table 4 Buffers will take a 

small portion of the chip area (about 4.4%) 

therefore this overhead can be ignored. 

 

5.3. Checking the Number of Buffers 

and Their Location Using Second 

Approach 

   In the previous section, an approach was 

presented in order to reduce the modifiable 

error rates in the computational system 

implemented on DNA architecture. 

Modifier buffers lead overhead in terms of 

occupied space and latency in system. 

Therefore, decreasing the number of 

buffers will increase the system 

performance. On the other hand, the 

number of modifiable errors will be 

increased without using buffers. Table 5 

shows the number of required buffers in 

regard to the number of applied electrodes 

on the surface of digital microfluidics. 

Table 5 indicates, as the number of applied 

electrodes on the surface of microfluidics 

to do calculation increases, the number of 

modifier buffers also increases. This result 

is quite expected, since the probability of 

error occurring follows normal distribution 

function on the surface of microfluidics 

chip. Therefore, the probability of error 

occurring is higher in the central 

electrodes. Electrodes were placed in 

different locations of microfluidics chip in 

order to calculate the number of buffers 

and the maximum number was considered 

as the number of required buffers. 

 

Table 5. Number of required modifier 

buffers in order to reduce the modifiable 

error rate. 
Benchmark Complexity #IO #tiles #buffer 

C17 6 7 63 5 

C432 160 43 1638 43 

C1908 880 58 2646 98 

C3540 1669 72 8712 342 

C6288 2406 64 16380 590 

 

That shown in table 5 the number of 

required buffers was significantly lower 

than the previous approach. 

 

6. CONCLUSION  

   The main challenge for design of DNA-

based logic systems is concentration 

changes due to error. The concentration 

changes lead error in the final result of 

calculation. By increasing the size of 

implemented system, the probability of 

unwilling reactions will be increased and 

also we expect some changes in 

concentration of final output strands in 

compare to concentration. In this paper, a 

new buffer gate proposed that enables 

cascading of multi-stage logic circuits with 

increased the system reliability. The 

proposed buffer will occupy two tiles on 

the level of digital microfluidic. Therefore, 

the area will be increased as the number of 

buffers increases. On the other hand, the 

reliability will be decreased as the number 

of buffers decreases. Therefore, it is 

essential to make a trade-off between the 

number of buffers and fault tolerantly. 

With less than 4.4 tiles overhead, 

reliability can be increased significantly. 

With The overhead caused by buffer gates 

will be reduced with optimal use of them. 

Therefore, this paper used the normal 

distribution to calculate the minimum 

number of buffers in a way that does not 

reduce the reliability. 
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