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Abstract:

Contact mechanics is related to the deformation study of solids that meet each other at one or more points.
The physical and mathematical formulation of the problem is established upon the mechanics of materials and
continuum mechanics and focuses on computations involving bodies with different characteristics in static or
dynamic contact. Contact mechanics gives essential information for the safe and energy efficient design of
various systems. During manipulation process, contact forces cause deformation in contact region which is
significant at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models
such as Hertz, DMT, JKRS, BCP. MD, COS, PT, and Sun have been applied as the continuum mechanics
approaches at nano-scale. Recent studies show interests in manipulation of biological cells which have different
mechanical properties. Low young modulus and consequently large deformation makes their manipulation
so sensitive. In this article small deformation contact mechanics models are used for biological cell, in air
and liquid environment, then results will be compared with Tatara contact mechanics model which has been
developed for hyperelastic materials with large deformation. Since biological cells are mostly modeled as visco-
or hyper-elastic materials, this model will be more compatible with their condition. FE simulation has been done
to investigate the applicability of these models and finite element approach in different ranges of deformations.
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1. INTRODUCTION mechanical response of the cell, real time observation
of cell development in order is required. Finally,

It is now well known that biological cells sense mechanical cell characterization experiments need

the mechanical changes in their environment.
The outcoming response to mechanical changes
is determinative in controlling the cell’s action.
The mechanical cell response is an intricate
phenomenon. Realizing the mechanical behavior
of the cell, first needs a precise knowledge of both
force and stress distribution within the contact area.
This feature is crucial since determining the force/
stress of various types of load can dictate the
mechanical cell response. Moreover, to correlate
the molecular biochemical interactions with the

to be conducted in an in vitro environment so that
the cell can be kept several hours in a living state
for long experiments. Therefore, dependable and
automatic measurements are needed to decrease
human interference during the measurement process
[17].

Pursuant to literature, much endeavor has been
dedicated to recognize the mechanism by which
the cell perceives the external mechanical
actuations. In fact, so many methods have been
developed, whether to mechanically stimulate
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cells, sense force distributions or to determine
the mechanical properties of the cells. Such as
micropipette aspiration, atomic force microscopy,
magnetocytometry or optical tweezers principles
[18]. Among these methods, the most promising
ones involve Scanning Probe Microscopy (SPM)
techniques for the nano-scale level. These techniques
have the potential to propone precise quantitative
information relative to local forces and contact
mechanics [17]. The Atomic Force Microscope
(AFM) has become a commonly used tool in the
field of bioscience.

The original work in contact mechanics dates back
to 1882 with the publication of the paper “On the
contact of elastic solids” by Heinrich Hertz. Hertz
was trying to find out how the optical characteristics
of multiple, stacked lenses might change with
the force holding them together. Results in this
field have since been expanded to all fields of
engineering, but they are most essential in the study
of tribology and indentation hardness. Hertzian
contact stress refers to the localized stresses that
develop as two curved surfaces come in contact
and slightly deform under the imposed loads. This
amount of deformation is dependent on the modulus
of elasticity of the material in contact. It gives the
contact stress as a function of the normal contact
force, the radii of curvature of both bodies and the
modulus of elasticity of both bodies [15].

It was not until nearly one hundred years later that
Johnson, Kendall, and Roberts found a similar
solution for the case of adhesive contact. This theory
was rejected by Boris Derjaguin and co-workers
who proposed a different theory of adhesion in the
1970s. The Derjaguin model came to be known as the
DMT (after Derjaguin, Muller and Toporov) model,
and the Johnson et al. model came to be known as
the JKR (after Johnson, Kendall and Roberts) model
for adhesive elastic contact. This rejection proved to
be instrumental in the development of the Tabor and
later Maugis parameters that quantify which contact
model (of the JKR and DMT models) represent
adhesive contact better for specific materials.
Further advancement in the field of contact
mechanics in the mid-twentieth century may be
attributed to Bowden and Tabor. Bowden and
Tabor were the first to emphasize the importance of

surface roughness for bodies in contact. The works
of Bowden and Tabor yielded several theories in
contact mechanics of rough surfaces [16].
However, these developments are confined to the case
of small deformation and based on point or line contact
of half-space elastic body model, and problems of
large deformations in simple compression of elastic
spheres as well as elastic bodies have remained
unsolved. In 1991, Tatara proposed a new model
which was the extension of Hertz mechanics model
for hyper elastic material like rubber.

The organization of this article is as follows:
interaction forces which are important in liquid
environment are studied and their effects in contact
mechanics models are applied. Then a comparison
between small deformation contact models for
gold nano-particle and biological nano-particle
will be done. In addition Tatara large deformation
model will be simulated for two different kind of
biological cell and its results will be compared with
small deformation models. Moreover, FE simulation
will be done to investigate compatibility of contact
mechanics models with finite element determination.

2- THEORY

2.1. Contact mechanics models

Contact mechanics models are used in different
literature. But since these models have been
developed for special conditions, their application
in other situations would encounter problems and
limitations. The Hertz model is the first contact
mechanics model which does not consider the surface
forces in contact, so if surface forces presents, this
model is not appropriate for low loads. DMT theory
considers a long-ranged surface force which acts
outside the radius of the circle of contact, but contact
geometry is similar to Hertzian. This model applies
to rigid system with low A, low adhesion and small
radii of curvature, but may underestimate the true
contact area. JKR considers a short-ranged surface
force which acts inside the radius of the circle of
contact. It applies to high A systems, high adhesion
and large radii of curvature, but may underestimate
loading. Other important contact mechanics model is
MD theory which considers the Dugdale potential to
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describe attractive forces. It has analytical solution,
but parametric equations. It applies to all system
with all values of A. But since this model is hard to
use in complex system, other empirical and semi-
empirical models such as BCP, COS, PT and SUN
are developed to enhance the tractability of the MD
model. These models are all applicable in small
deformations, but there is another model which will
be investigated in this paper as a large deformation
model. this model invoke a non-linear elastic response
and a large deformation formulation, however, it is
the expanded Hertz theory for large deformation so
it has some limitations. In this model the influence
of adhesion and the effects of interfacial friction are
not considered, but still seems to be an appropriate
model to use in biological applications [16].

Small deformation models equations are widely
used in other papers and their equations are given
in appendix. However, Tatara model formulation
as a suggested theory has been rarely used in other
literature, so its formulae will be given in next section.

Tatara theory

The original Hertz model for a small deformation
of a half-sphere of radius R, under compressive
contact with a spherical probe of radius R, predicts
that the force, F, depends on the 1.5% power of 6.
In the subsequent formulas, subscript 1 and 2,
respectively, denote the quantities for the sample
and the tip, with common notations of E and v,
respectively, for Young’s modulus and Poisson’s
ratio [19]
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In Tatara theory, by using the same symbol a as
above, F is given as:
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Where a, = —(1+v1)(3—2v1)

2.2. Interaction forces

The DLVO theory states that the total interaction
force (F) between two lyophobic particles in a
medium can be expressed as a sum of the electrical
double-layer force (F) and the van der Waals force
(F) as follows:

F=F +F, 3)

The van der Waals force between two spheres of
constant radii (R, and R, are treated as parameters)
is then a function of separation (D) since the force
on an object is the negative of the derivative of the
potential energy function [1];

dU(D
o) = =52 (4)
Yields:
AR, R
Fyw(D) = -z (5)

" (R, + R,)6D?

The van der Waals forces between objects with
other geometries using the Hamaker model
have been published in the literature. From the
expression above, it is seen that the van der Waals
force decreases with decreasing particle size (R).
Accordingly, the van der Waals forces become
prevailing for collections of very small particles
such as very fine-grained dry powders (where there
are no capillary forces present) even though the
force of attraction is smaller in magnitude than it is
for larger particles of the same substance.

A surface in a liquid may be charged by rupture of
surface groups or by adsorption of charged molecules
such as polyelectrolyte from the surrounding solution.
This terminates in the development of a wall surface
potential which will attract counterions from the
surrounding solutionandrepel co-ions. Inequilibrium,
the surface charge is balanced by oppositely charged
counterions in solution. The region near the surface
of enhanced counterion concentration is called the
electrical double layer (EDL). The EDL can be
approximated by a sub-division into two regions.
This immobile layer is called the Stern or Helmholtz
layer. The region adjacent to the Stern layer is called
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the diffuse layer and contains loosely associated ions
that are comparatively mobile. The total electrical
double layer due to the formation of the counterion
layers results in electrostatic screening of the wall
charge and minimizes the Gibbs free energy of EDL
formation.

The thickness of the diffuse electric double layer
is known as the Debye screening lengthl / k. At
a distance of two Debye screening lengths, the
electrical potential energy is reduced to 2 percent of
the value at the surface wall [1].

1/2
K= (Z Poo; > e?z? [ee KgT) (6)
i

With unit of m™! where

In which p_; is the number density of ion i in the bulk
solution. Z is the valency of the ion. For example,
H* has a valency of +1 and Ca?' has a valency of
+2.€p is the electric constant, ¢ is the relative static
permittivity, k is the Boltzmann constant and T is
the temperature in Kelvin.

The repulsive free energy per unit area between two
planar surfaces is shown as [11]

64KzTpoy?
W= (#) - -
K
Where:
v is the reduced surface potential [11]
Zelpo

= tanh () 8

y = tanh (- ®)

y, is the potential on the surface.
The interaction free energy between two spheres of
radius Ris [11]
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Combining the van der Waals interaction energy and
the double layer interaction energy, the interaction
between two particles or two surfaces in a liquid can
be expressed as:

W(D)= W(D) + W(D), (10)

Where W(D), is the repulsive interaction energy due

two electric repulsion and W(D), is the attractive
interaction energy due to van der Waals interaction.
However, direct measurement of surface forces
conducted in aqueous media showed the existence
of forces not considered in the DLVO theory [12].
To sum up, although DLVO theory can be used
in biological colloids, protein interactions are
complicated because short-range forces have a
significant impact on the rates and strengths of
protein associations when involve, for example,
hydration force. Therefore, in order to describe the
solution behavior of proteins, DLVO theory and
other forces’ fields (e.g. non-DLVO forces) must
be considered [4].

Hydration forces or solvation forces occur when
molecules must overcome the obstacle caused
by the water layer adsorbed on the surface of
macromolecule. The energy for dislocating this
water regulates the self-assembly of protein
aggregates and other biomolecules. The raised
intramolecular repulsion because of solvation layer
is a well accepted phenomenon. Furthermore, the
exclusion of water from protein interfaces stabilizes
the interactions. This solvent mediate attraction is
associated with the disruption of hydrogen bonds
between water molecules by non-polar solutes
[5]. From the imaging point of view, long-range
interactions are probably less important, because
these forces are likely to contribute only to a slowly
varying background and to distribute over a large
area on the specimen, resulting in small local
deformations, provided that they are not very large
in magnitude [9]. However, at short ranges, the
hydration force (or solvation force in fluids other
than water) is known to be important [10-12]

So the DLVO theory may be extended to include the
contributions from the extraneous forces, as follows:

F=F,+F +F,, (11)

Where F' ya TEPTESENLS the hydration force.
Different works for different electrolyte has been
done. The work done by Grabbe and Horn 1993
showed that hydration force is slightly changed with
the changes in surface treatment and electrolyte
concentration. The measured hydration forces could
be fitted to a double-exponential function of the
form [13]:
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In which R is the tip radius, C, C,, D, and D, are

constants and D is the separation distance.

3- RESULTS

3.1. Contact mechanics models simulation results

Studies show that DNA can be considered as a nano-
scale spherical pack [8] (Figure 1). So to simulate
nano-scale biological cell behavior in contact
moment, a pack of DNA was considered. Since
bilological cells, such as DNA, live in biological
environment, which is liquid, four different kinds of
liquids are used to identify the effect of biological
environment on DNA behavior. The liquid
environment affects the interaction forces. So first
of all forces in different liquids are simulated to find
out the effectiveness of these forces in manipulation
of biological cell in biological environment at the
contact moment.

To calculate interaction forces some parameter
are needed. One of these parameters is Hamaker
constant which is calculated as follows [11]:
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Where, K, is Boltzman coefficient. T is temperature
in Kelvin. ¢ is dielectric constant for tip. €, is

dielectric constant for sample and ¢, is dielectric
constant for environment
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Figure 1: Forced packing of a circular DNA

The second part of the equation is ignorable.
Calculated Hamaker constant for liquids are shown
in Table 1.

Due to equation (12) calculating hydration foce for
different liquids needs four constants, C,,C,,D, and
D, (Table 2).

DNA and AFM tip properties are shown in Table 3.
Table 4. shows van der Waals force variations for
different liquids in contact area. Contact moment in
manipulation happens in about 0.165 nm. As shown in
this figure, in this distance, the van der Waals force is
approximately zero for these liquids. Since Hamaker
constants for different liquids were approximately
the same and have very small differences and forces’
curves are similar. As mentioned before van der Waals
force is dependent on Hamaker constant. As the data
indicate, the van der Waals force for the liquid with
smaller Hamaker constant is smaller .

Table 1: Liquid properties

Dielectric Hamaker constant Debye length
coefficient (107" (nm)
Water 80 2.64 96
Ethanol(10%) 74 2.61 176
Ethanol(20%) 69.5 2.58 196
Methanol 734 2.6 202
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Table 2: Hydration force constants [2]

C; (mN/m) C,; (mN/m) D; (nm) D, (nm)
Water 7.2 0.35 0.44 2.4
Ethanol(10%) 5 0.42 0.48 1.25
Ethanol(20%) 3.27 0.43 0.5 1.1
Methanol 8 0.35 0.41 23

Table 3: DNA and AFM tip properties

Elasticity modulus(Gpa) Poison ratio Dielctric coeffeicient 6 (C/m?)
DNA 0.1-0.2 0.35-0.5 2.56 0.16
AFM tip 169 0.27 3.9 0.025

Table 4: Van der Waals forces vs. seperation distance

Van der 0.021 0.0215 0.022
waals force (nm) (nm) (nm)
(nN)

Water 8.53 8.21 7.87
Ethanol 10% 8.43 8.11 7.77
Ethanol 20% 8.33 8.01 7.67

Methanol 8.39 8.07 7.73

Table 5: Hydration forces vs. seperation distance in different liquids

Hydration 0.02 0.08 0.16
force (nm) (nm) (nm)
(nN)

Water 0.121 0.105 0.0885
Ethanol 10%  0.0869 0.0765 0.0654
Ethanol 20%  0.0598 0.0531 0.0451

Methanol 0.133 0.115 0.095

Table 6: Electrical double layer forcevs. seperation distance

Electrical double 0.1 0.2
layer force (N) (nm) (nm)
Water 3.2085¢10™"? 3.205 10
Ethanol 10% 1.6196 €107 1.6187 107"
Ethanol 20% 1.36585 107" 1.3653 e10"
Methanol 1.3998 ¢107"” 1.3991 e107"
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Figure 2: DMT force (N) — deformation(m) curve in air
and liquid

Table 5. illustrates hydration force variation
for different liquids. As shown in the table
5. hydration forces decrease by increasing of
distance, which results in ignorable hadration
force at 0.165nm. the other considerable result is
significant decrease in hydration force for ethanol
10% compared with water which shows the effect
of concentration of the solvent on hydration force
[2].

Table 6. show the electrical double layer forces in
liquids. Again these forces are too small in contact
moment to be considered.

Although it is found that these forces are too small
to be considered in contact mechanics models, but
forces were calculated and added to the external
force to show the difference between results in
liquid and air environment. Results are shown in
Figures 2-4.

As expected, simulation shows that interaction
forces calculated for fluid environment and added
to the external force do not play an important role in
manipulation and at the contact moment. So it can be
concluded that contact mechanics models in liquid
and air environment has ignorable differences. The
same results were obtained for gold nano-particle
[1]. Since most of interaction forces are repulsive,
as shown in magnified figure to have the same
deformation in fluid environment more force is
needed to be applied than air.
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Figure 4: Hertz force(N)- deformation(m) curve in air
(solid) and liquid (dash)

To show differences between various contact
mechanics models results for gold nano-particle
and biological cell, simulation of contact
moment for gold nano-particle and DNA has
been done.

For both gold nano-particle and DNA, as shown
in Figure 5 and 6, rising of pushing force results
in increasing of indentation depth and contact
area. Disregarding of adhesion force by Hertz
theory results in underestimating of indentation
depth. So this model cannot be used for all
systems.
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Figure 5: Contact mechanics models for gold nano-
particle

It can be applied only for non-adhesive contacts
with small deformation. In contrast JKR contact
mechanics model considers the greatest adhesion
force so the indentation depth obtained from this
model is high. Consequently, JKR model provides
the greatest contact area and the smallest contact
radius is estimated by Hertz theory. DMT model
has the lowest adhesion force. So this model is
approximately similar to Hertz model and provides
small indentation depth. BCP adhesion force and
indentation depth is between JKR and DMT models.
MD model does not have limitations of other

models, so depending on deformation it’s graph can
fall down the other models’ graphs. But since MD is
an analytical model, other empirical models such as
PT or COS which have more flexibility and easier
calculation are used for complex systems.
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Figure 6: Contact mechanics models for DNA

Since Tatara theory is the expanded model of Hertz
theory for hyper-elastic material, the comparison
is done between these two models (Figure 7).
Biological cells are usually modeled as a visco or
hyper-elastic materials. Small deformation contact
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mechanics models depict that whatever nano-
particle becomes softer contact area rises while
the applied load declines with sharp slope. But as
mentioned before biological cells are visco or hyper-
elastic materials and these kinds of materials have
damping properties which does not let the material
to deform so much due to small forces. Since Tatara
theory as a large deformation model established for
a hyper-elastic material, it is simulated for DNA.

cell whose experimental data are available. This
comparison will prove our claim about validity
of applying of Tatara model for biological cell. In
this part a mouse embryonic stem cell is used. Its
properties are shown in Table.7.

Table 7: Mechanical properties of live mESM [14]

Live undiff

Results show that using this model the slope of Diameter of the cell (Hm) 1y
force- deformation curve is slower which is closer Elastic modulus (Kpa) 0.169
to the actual situation, so it is suggested to use this Poisson ratio 0.49
mOdel for blOlOglcal Cell Diameter of the tlp 5
The same comparison is done for another biological
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Figure 7: Comparison of Tatara and Hertz models force(N)- displacement(m) curves for DNA
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As it has been shown in Figure 8(a) Tatara model
curve is more compatible with experimental data
provided in Figure 13(b). The measured difference
between experimental data and Tatara model is
about 0.3% which is acceptable. This result for
mESC proves that, as it mentioned before for DNA,
Tatara contact mechanics model is more appropriate
to use in analyzing biological cells behavior in
contact moment and under applied load.

3.2. FE simulation results

In continuum mechanics, the mechanical properties
of elastomeric materials are described in terms
of a strain-energy density function W. If the left
Cauchy-Green tensor is denoted by B=FFT, where
F is the gradient of deformation and A , A, A, are the
principal stretches, then, for an isotropic material,
W is a function of strain invariants

I, =trB = 22 + 25 + 13,
1
I, = 5[(1:rB)2 —tr(B?3)] = 2223 + 2313 + 2342,

I3 = detB = 121373 (14)

Rubber-like materials are often assumed to be
incompressible provided that the hydrostatic stress
does not become too large and so the admissible
deformations must be isochoric, i.e., detF=1 so that
[,=1. The response of an incompressible isotropic
elastic material can be determined by applying the
standard constitutive law
T——pl+26—WB—Za—WB‘1 (15)

oL al,
Where p is a hydrostatic pressure term associated
with the incompressibility constraint and T denotes
the Cauchy stress. The classical strain-energy
density for incompressible rubber is the Mooney-
Rivilin Strain-energy

1
W = E,u[o((ll -3)+U-a)U2—3)] (16)

Where p>0 is the constant shear modulus for
infinitestimal deformations and 0< o <1 is a
dimensionless constant. when o=1 in (49), one
obtains the neo-Hookean strain-energy

W=%(11—3) (17)

Which corresponds to a Gaussian statistical
mechanics model, and is often referred to as the
kinetic theory of rubber. While the Mooney-Rivilin
and neo-Hookean models are useful in describing
rubber-like materials at small streches, the theorical
predictions based on equations (16) and (17) do
not adequately describe experimental data for
rubber at high values of strain. For modeling of
soft biological tissue, where rapid strain stiffening
occurs even at moderate stretches, classical models
are inappropriate.to model such stiffening, a number
of alternative models have been proposed. In the
molecular theory of elasticity these models are
usually called non-Gaussian, because they introduce
a distribution function for the end-to-end distance
of the polymeric chain composing the rubber-like
material which is not Gaussian. Such models are
applicable to many other materials such as low-
density polyethylenes, wool and chain fibers, and
DNA molecules [20].

The finite element simulation is performed using
ABAQUES 6.10. Following hyposesis are considered
in FE modeling of biological cell:

(@ (b)

Figure 9: (a) Meshed model of AFM tip and spherical
biological cell (b) Biological cell deformation after
applying load by AFM tip

The problem is axisymetric.

AFM tip is elastic (silicon).

The biological cell is supposed to be
hemogenous, hyperelastic and incompressible
material.

The part was meshed with 2786 triangular elements

wo=
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(Figure 14(a)).

The result of biological cell deformation is shown in
Figure 9(b). To compare FE simulation results with
Hertz and Tatara model, force- deformation curve is
extracted which is shown in Figure 10.

T T

o

Force (N)

et
T FEM
osh i Ta_t_ara _.:.::7' e : ;

j:;"\_::;jf'_“..——

0% 1 15 2 5 3 35 ]

Deformation (m)

Figure 10: Comparison between Tatara model, Hertz
model and FEM simulation

As shown in Figure 10 finite element simulation is in
good agreement with Hertz theory and experimental
data provided in Figure 8 (b) for small deformations
but as indentation depth is increased the curves
show significant difference. This result is similar to
the results provided by Ladjal et.al.

4. CONCLUSION AND DISCUSSION

In this article, different small deformation contact
mechanics models in manipulation of biological cell
at contact moment were simulated. Since biological
cells live in biological environment, four liquid in
which biological cells can be kept were considered.
Due to DLVO theory two major forces, van der
Waals and electrical double layer forces, should be
added to external force which is exerted by AFM tip.
Although DLVO theory was proved to be practical
for biological environment, literatures showed that
non-DLVO forces such as hydration forces are also
important. So, to modify contact mechanics models
for biological condition three major forces were
added to external force, van der Waals, electrical
double layer and hydration forces. Contact moment
of manipulation was simulated for nano-scale DNA

of 50 nm radius submerged in pure water and three
other biological fluids.

Results for van der Waals force shows that this
force in every four fluids tends to zero in separation
distance of 0.165 nm, so it can be ignored in contact
theories. Electrical double layer and hydration
forces are also ignorable due to their small values.
Although forces’ values were too small to be
considered, they have been applied in JKR, DMT,
Hertz and BCP theories and added to the external
force to see the difference of this model in air and
liquid environment. Results show that these theories
for air and liquid environment are approximately
the same. This conclusion is analogous to gold nano
particle [1].

Small deformation contact mechanics models
simulation results for DNA were compared with
gold nano-particle. Since DNA is about 1000 times
softer than gold nano particle, it was expected that
larger deformations occur. Results comparison
proved this idea. To deform gold nano-particle
about 2.5x10%, 1000 times more force is needed in
comparison with DNA.

Since Tatara theory is the expanded model of Hertz
theory for hyper-elastic material, the comparison
is done between these two models (Figure 7).
Biological cells are usually modeled as a visco or
hyper-elastic materials. Small deformation contact
mechanics models depict that when the nano-
particle becomes softer, contact area rises while
the applied load declines with sharp slope. But as
mentioned before, biological cells are visco or hyper-
elastic materials and these kinds of materials have
damping properties which does not let the material
deform so much due to small forces; it means
the force-deformation curve does not have sharp
slope. Since Tatara theory as a large deformation
model established for a hyper-elastic material, it is
simulated for DNA. Results show that using this
model the slope of force- deformation curve has
slower trend which is closer to the actual situation,
so it is suggested to use this model for biological
cell. To verify the results obtained for DNA,
simulation is done for mESC which experimental
curve is available. Results’ comparison in Figure 8
shows that Tatara theory is more compatible with
experimental data.
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Finite element simulation is done to compare its
results with Hertz and Tatara model. Simulation
results show agreement of finite element results with
Hertz model in small deformations but for larger
deformations its results are different.

Finally, it should be mentioned that for an accurate
biological cell manipulation in liquid media, more
studies about contact moment and deformations are
needed. Since in vivo biological environment has
different properties, study of contact moment and
manipulation of biological cell in this environment
can be more useful.
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Appendix

Hertg theory

As mentioned in Table.l Hertz theory does not consider the surface forces and adhesion in
contact. The relationship between applied load and indentation depth is given by following
equations:

F = Kab AaA-1
5 A2
Contact radius and adhesion force are obtained as follows:

3 _R _
a’ = F (A-3)
Fag=0 4-4)
JKR theory

The JKR theory model considers a short-ranged surface force which acts inside the contact area.
The equations are as follows:

Ka3
Fz?—\/6nw1{a3 (A-5)
o a? 2 |6nwa U—6)

R 3 K

R ~.

a® = E(F + 3nwR + (67rw§F + (3nwR) )2) (A—=7)
1

F,; = (6nwKa3)2 (A-8)
DMT theory

DMT model is the Hertz model with an offset due to surface forces. It considers a long-ranged
surface force which acts outside the contact area but contact geometry is similar to the Hertz
model. The equations are given as:

F = Kad — 2wR (A-9)
a2
== (4 — 10)
Contact radius and adhesion force are obtained as follows:
a® = g(F + 2mwR) (A-11)
F,q = 2nwR (A-12)
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MD theory

The MD theory model is more complex and more accurate than the other nano-contact
mechanics models up to now. It considers the Dugdale (a step function) potential to describe
attractive forces. The equations are:

1
Ka® TwK?\3
F:T—Aa2< Fi > [\/m2—1+m2arctan mz—l] (A—13)

R
» 1
a® 4la /mwN\3
5=T——(~—) m? —1 (A —14)
R 3 \RK
» 1
\ 2.06 (Rw*\3 ( )
- | — A-1
o \nK?
= A—16
m=- ( )
da?; K \3 4a? [ K \3
a a
1=—<~—) ><[\/mz—1+(m2—2)arctanw/m2—1]+ ( = )
2 \nR?w 3 \nR?w

X [1 —m +m? — larctanym? — 1] (A-17)

1
2\3
F,q = Aa? <7twK > X [\/ m2 — 1 + m?arctany m? — 1] (A —18)

R

COS theory

Use of the MD theory is complicated by the indirect relationship between force and indentation;
therefore, the COS empirical model has presented a solution for enhancing the tractability of the
MD theory model by developing an empirical approximation of the relationship between contact

radius and applied force. The equations are:
2

a a+\/1+F/Fad(a) 3
ay(a) _< 1+a ) Er=18)
A =-0924Ln(1 — 1.02a) (A —20)

PT theory

The COS and PT equations provide the means to effectively apply the MD model to
experimental data but the COS and PT models have more rapid calculations than the MD
analytical model. The equations are:
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4

ai(a a 4 3 a a %
5 _ og)[( 1+ F/F ))] _5(@( 314 F/Fu )) 421

R 1+a 1+ a

A = —0.913Ln(1 — 1.018a) (4-22)
In which:

do(0) = —0.451a* + 1.417a3 — 1.36502 + 0.950a + 1.264 (A —23)
Fog(a) = 0.267a? — 0.767a + 2.000 (A —24)
S(a) = —2.160a%°1° + 2.7531a%06* 4+ 0.073a191° (A —25)
B(a) = 0.516a* — 0.683a® + 0.235a* + 0.429a (4 —26)
Sun Theory

the Sun model presents adhesive contact model for hyperboloid (blunted conical) indenters. The
equations are:

1
F_3E* A A+a2—A2 TL'+ - (a/A)? -1 (8naw)i Aor
-2 28|” 2 2T 1) Y\ 3E ( )
1
5 ad (1 N (a/A)? -1 <8naw>§ gy
ToR\2 T M Gz + 1 3E ( )
In which:
A = R; cot(¢p) (A—29)
o)
BCP theory

The BCP semiempirical model has been presented because the Hertz, DMT, and JKRS models
did not match the experimental data. The equations are as follows:

o Ka3 3twKa3 & Al
"R 2 o ( )
1

10) « R\ A— 31
- R’ Kz ( )
R 7 . 33 2 3 _ \?
3 _ 1 z o 2 _
a’ = F + 47'[(1)R + (16 (na)R) + > (anF)) (A-32)
1
3nwKa3\? -
Foq = — + TwR (A—33)
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