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Abstract:
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the 
molecular based approaches are limited by the length and simulated process time. As an attractive alternative, 
this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically 
efficient modeling of solid structures. The approach is applicable to multi-body mechanical systems. In FIMM, 
a direct link between the nano field atoms and macro field nodes by the local atomic volume displacements 
associated with every macro field node in their common zone has been replaced with the previous methods. 
For a complete model of the macro section, a nine-noded Lagrange element has been developed, and for small 
dimensions, the Sutton-Chen potential (for problems of mechanics) has been used. In the presented model, the 
undesirable effects of free surfaces, common surfaces, and surfaces close to the interface with the macro field 
have been eliminated, and after presenting a practical and noteworthy procedure for the dynamics of systems 
in general, seven problems (in the form of three examples) have been offered to showcase the practicality, 
simplicity, and the effectiveness of this method. 
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1. INTRODUCTION

Although they have been extensively applied for 
simulation of large scales, the continuum mechanics-
based methods, including the finite element or other 
numerical methods, don’t provide the correct physics 
in atomic scales. Table 1 lists a complete span of 
various scales and models in material modeling. 
Upon the appearance of advanced technologies, the 
interfacial behavior of macro (large) to nano (small) 
scales has been discussed. Connectivity of models 
in various scales was the first and the best approach 
of course. This approach named Multiscale method 
and has been studied and developed in a lot of works 
for various systems. In multi-scale approaches, 
implementation of molecular based models 
guarantees the correctness of obtained behavior 
in small scales; while for larger dimensions that 

don’t have tangible nonlinear behavior, utilization 
of continuum mechanics (CM) based methods is 
effective, and there is no need to spend a lot of time 
by application of the atomic models for these parts. 
Therefore, the continuum mechanics models and the 
atomic models interact with each other in such a way 
as to model the whole system and achieve the goal 
which has been defined and set.
During the last decades, a lot of efforts have been 
conducted to provide the numerical solutions for 
macro field. As was pointed out in the previous 
section, the common conventional models have many 
limitations. Despite their reasonable computational 
costs, the continuum mechanics methods are totally 
incapable of describing phenomena in the nano 
scale. On the hand, molecular dynamics models are 
very limited with respect to the time dimension; 
as the modeling of objects in the micrometer and 
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microsecond dimensions is only possible by means 
of supercomputers. So, researchers are trying to use 
the advantages of the aforementioned methods and 
to overcome the existing flaws by combining them 
together. The outcome of these efforts has been the 
development of multi-scale methods. 
Multi-scale methods are divided into “hierarchical” 
and “concurrent” groups. In the hierarchical 
models, the properties are calculated at one scale 
and then passed on to another scale. In other 
words, the information obtained from one model 
is enriched by another model. These approaches 
include two groups, in which, the information from 
micro-scale systems is transferred to the continuum 
mechanics model. The first group are the models 
based on the Cauchy-Born hypothesis [1, 2], in 
which, the information acquired from the atomic 

structure of the object clearly reveal themselves 
in the calculation of the elastic stress and tensor 
of the material’s properties. The second group of 
these models is based on the Virtual Atom Cluster 
(VAC) [3], in which, the structure of the material is 
enriched on the basis of the information obtained 
from molecular mechanics. This method has been 
used for the study of carbon nano tubes.
In the concurrent models, there are several 
simultaneous models in the multi-scale simulation, 
and information is exchanged among them 
concurrently. These methods are the result of 
efforts that have tried to combine the molecular 
dynamics models with the continuum mechanics 
models. Over the past decade this group of multi-
scale models has received considerable attention in 
the literature. It includes various frameworks, but 
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Table 1. A complete span of various models in material modeling 
Length	Scale	 Sub	atomic	 Nano Micro Macro	
Time	Scale	 Sub nano Sec Nano Sec Micro Sec Sec 

Theory

Features

Small scale approaches Multiscale approaches Large scale 
approaches

Quantum 
Mechanics MD SCGMD CM-MD 

coupling 
CM-SCGMD 

coupling 

Continuum 
Mechanics 

(CM) 
Structure	unit	

Unit	Shape	

Phonons Atom Site Element-Atom Element-Site Element 

System	Shape	
 

 
Lattice

Deformation	 Discrete Discrete Discrete Continuous-
Discrete 

Continuous-
Discrete Continuous

Time	Scale	 Below 1pSec 1fSec-1nSec 1fSec-1μSec 1nSec- 1 mSec 1nSec-1Sec 1mSec-
several hours

Length	Scale	 1fm-1A� 1A� - 10nm 1fm-100nm 1nm-10μm 1nm-1mm 1μm-several 
meters 

Applicable	to	 Sub atomic 
studies 

Molecular 
sciences 

Nano to 
micro 

Medicine 

NEMS, 
Nanorobotics, 
manipulation, 
drug delivery 

Nanorobotics,
MEMs, 
NEMS 

Macro scale 
systems 

Not	applicable	
to 

Super nano 
metric systems 

Macro 
processes in 

long 
duration 

Super micro 
processes 
with large 
time scales

Molecular 
sciences and 
sub atomic 

studies 

Molecular 
sciences and 
sub atomic 

studies 

Small, huge 
and non 

homogeneou
s systems 

      
 

Table 1: A complete span of various models in material modeling
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three major methods may be addressed. The quasi-
continuum method [4, 5], which was presented by 
Ortiz et al., is now the most applied method, and 
many studies have been conducted on this method. 
The other model is the Bridging Domain method 
[6], which has been developed by Belytschko et al. 
In this method, in part of the simulation zone, the 
continuum domain and the atoms exist together; 
therefore, the validity of this model in the bridging 
domain needs to be investigated extensively. The 
third approach, known as the Bridging Scale method 
[7, 8], has been presented by Liu and his colleagues. 
In this method, it is assumed that the continuum 
solution is not exact and the resulting error can 
be removed through molecular dynamics. The 
most important issue in the development of these 
hybrid methods has been the formulation of a 
comprehensive computational coupling along the 
interface. 
This fact has been revealed in a brief review of 
the developed and presented methods. In the 
coupling models, the continuity of the material’s 
characteristics should be preserved during the 
transition from the atomic forces to the stress-
strain field of continuum mechanics. Coupling 
models have been developed for many problems, 
including the crack problem, and they have often 
been named Finite Element–Atomistic (Feat) 
coupling procedure, which is the combination of 
molecular dynamics and finite element models. 
Likewise, a general formulation of the ordinary 
finite element, which allows the Macro Field (MF) 
nodes to be examined as coarse and fine Nano Field 
(NF) atoms, has resulted in another computational 
scheme for the coupling of the continuum and the 
atomic environments, called the Coarse-Grained 
Molecular Dynamic (CGMD).
The Quasi-Continuum (QC) method that has been 
studied by Miller and Tadmor [9] is explicitly 
based on the complete description of a material’s 
environment. The Coupled Atomistic/Dislocation 
Dynamics (CADD) method of Shilkrot et al. [10] 
has been presented for the simulation, detection, 
and justification of the separations between the 
atomic and the continuum regions. This model had 
first been offered for the simulation of materials 
at zero degrees Kelvin (0 K), but recently, it has 
been developed to deal with the effects of finite 
temperature as well.
The general characteristic of these approaches, 

for the atomic and continuum coupling, has been 
the fine-graining and manipulation of MF mesh 
configuration for conformity with atomic length 
scales, and also the kinematic coupling of finite 
element nodes to discrete atoms along an interface. 
Henceforth, the approaches that make a one to one 
coupling between the atoms and finite element are 
called Direct Coupling (DC). 
When DC procedures are followed, the major 
problem that arises is the inherent difference 
between the atomic and the continuum 
computational models. The physical state of the 
atomic region is described by means of the non-
local inner-molecular forces between discrete 
atoms with specific position and moment; while the 
physical state of the continuum region is described 
by using the stress-strain fields which are statistical 
averages of the atomic attractions at larger scales of 
length and time. Generally, the ordinary coupling 
between discrete and continuum values can only be 
obtained by taking a statistical average of the scales 
in which the discreteness of the atomic structure 
can be approximated in the quasi-continuum form. 
Although, much better ways could be offered 
for the development of methods of coupling of 
the continuum domain with discrete domain, 
nevertheless, the application and development of 
these methods for the static and dynamic problems 
related to mechanical engineering is highly 
important. 
Up to now, the FEM was the most applied approach 
for macro part of coupling models; while, much 
better and more accurate methods, and even more 
exact numerical methods, exist for this purpose. 
Thus, in describing the problem, instead of the 
finite element method, the more general form of 
finite element, i.e. the MF solution method, is used. 
Based on this notion, we try to present a model that 
can be attached to the finite element method without 
any restriction, and can be used with other methods 
as well. 
So far, various NF-MF coupling frameworks have 
been presented. The  work  of  Park and Liu [11] 
is  an  attempt  to  describe the multiscale method 
ideas   and capabilities in   the   field   of   solid 
structures. Recently, some concentrated groups 
have focused on the multiscale approaches for 
various applications. They introduced various 
frameworks with capabilities of application to solid 
structures. For instance, Macroscopic Atomistic 
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Ab initio Dynamics (MAAD) method [12, 13], 
Heterogeneous Multiscale Method (HMM) [14], 
Multiscale Field Theory (MFT) [15] and Embedded 
Statistical Coupling Method (ESCM) [16] may be 
addressed. 
In this paper, a Fixed Interfacial Multiscale 
Method (FIMM) is proposed for computationally 
and mathematically efficient modeling of solid 
structures. The approach is applicable to multi-body 
mechanical systems. In FIMM, a direct link between 
the nano field atoms and macro field nodes by the 
local atomic volume displacements associated with 
every macro field node in their common zone has 
been replaced with the previous methods. 
Moreover, considering the mechanics of the 
problem, and using a system of equations in matrix 
form, a dynamic algorithm has been presented for 
dynamically solving the problem. The macro and 
nano field’s computational systems are independent 
of each other and only relate through an iterative 
update of their boundary conditions. This method 
presents an improved coupling approach which is 
inherently applicable to three-dimensional domains. 
In addition, it prevents the resolving of the 
continuum model into atomic resolution, and 
allows finite temperature cases to be applied. One 
of the prominent features of the present work is 
the presentation of reliable solutions for problems 
that include natural, forced, body, and interfacial 
degrees of freedom. Since solids are fairly rigid 
at the macro zone, the interfacial volume of the 
considered system has been moved to macro part 
and then, it assumed to be rigid. 
Thus, FIMM leaves negligible relative motion 
of atoms in every atomic volume by moving the 
interface into the macro part. Now, previous nano 
field and a bit of macro part form the new nano 
field. This leads to larger dimensions for nano field 
with regard to the last one. One major difference 
between ESCM and FIMM is the constraint of 
coupling, where ESCM uses a local average of 
atoms included in an interfacial volume.
In the following, both the macro (continuum 
model) and nano (atomistic model) field theories 
are discussed briefly first. Then, FIMM has been 
presented in details and validated by comparison 
with MD, CGMD, ESCM and MAAD approaches 

for a clamped silicon wafer in plane strain condition. 
At the end several useful results and discussion 
have been introduced

2. AN  OVERVIEW  OF  FEM  AND  MD

Extensive work has been done on the development 
of Finite Element Method for various systems. Since 
in mechanical systems, usually the macro section 
has a moving part and a sensing part, and these parts 
often operate by means of the piezoelectric property, 
we try to deal with the macro section from this 
perspective. Rajeev kumar et al. [17] investigated 
a finite element model for the active control of 
induced thermal vibration in layered composite 
shells with piezoelectric sensors and actuators 
(piezothermoelastic). Then, they presented a finite 
element formulation for the modeling of static and 
dynamic responses of multi-layered composite 
shells with integrated piezoelectric sensors and 
actuators, and subjected to mechanical, electrical, 
and thermal loadings [18].
In 2008, Zia et al. [19] have presented a finite 
element formulation for the vibrations of layered 
piezoceramic plates, which accounts for the effects 
of hysteretic behavior. The hysteretic behavior has 
been simulated in the dielectric domain by using the 
finite element method and applying the Ishlinskii’s 
model. In 2008, Balamurugan and Narayanan [20] 
have used a nine-noded piezolaminated degenerated 
shell element in order to model and analyze multi-
layered composite shell structures together with 
sensors and piezoelectric actuators.
The coordinates of any arbitrary parameter, at any 
arbitrary point can be expressed by the use of nodal 
coordinates and isoparametric shape functions in 
the following way

1
( , , ) ( )

Q

i i
i

Xξ η ζ
=

= ℵ∑P P
				  

				                             (1)

WhereP is the noted parameter,ℵ is the 
isoparametric functions, Q  is number of nodes of 
the considered element, and X is the position of the 
nodes. By using the kinetic, potential and external 
energies and writing the minimum energy principle, 
the equations of motion for the finite element system 
can be presented as: 
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    1 1
e e e qe ee e e e

M q C q K K K K q F K K F     
            uu uu uu u u u     (2)

where  eM uu ,  eK uu , 
e

K   u , q eF , 
e

K    , eF ,  eC uu , and eq are respectively, the 

element's mass matrix, stiffness matrix, electromechanical coupling hardness matrix, 
mechanical load, dielectric hardness matrix, electric force vector, structural damping 
matrix, and the vector of change of degrees of freedom in the considered system.  

In MD, a well defined potential function  1 2, , , NU r r r expresses the manner of 

dependency of the potential energy of a system consisting of N atoms with the space 
coordinates 1 2, , , Nr r r . The equation of motion of all atoms model can be expressed as 

i i i im =-r U+F                     (3)

Where, m and F are the mass of atoms and external (boundary) forces. The Finite 
Difference Method (FDM) is the usual approach for solving the differential equations 
of motion. FDM includes various approaches for analyzing the problem. Verlet and 
Velocity Verlet algorithms are the most famous methods. These algorithms are 
combination of the forward and backward Taylor expansions [21].  

In addition to the Lenard Jones potential as a famous one, the Embedded Atom 
Potential (EAM), Finnis-Sinclair potential [22] and Sutton-Chen potential [23, 24] may 
be addresses as multi-particle potentials. They may be implemented in the simulation of 
solid structures as well as the bio and fluidic fields. However, the solid structures are 
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where [ ]eM uu , [ ]eK uu , 
e

K φ  u , qeF , 
e

K φφ   , 

eFφ , [ ]eCuu , and eq are respectively, the element’s 
mass matrix, stiffness matrix, electromechanical 
coupling hardness matrix, mechanical load, 
dielectric hardness matrix, electric force vector, 
structural damping matrix, and the vector of change 
of degrees of freedom in the considered system. 
In MD, a well defined potential function 
( )1 2, , , NU r r r… expresses the manner of 

dependency of the potential energy of a system 
consisting of N atoms with the space coordinates

1 2, , , Nr r r… . The equation of motion of all atoms 
model can be expressed as
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famous methods. These algorithms are combination 
of the forward and backward Taylor expansions 
[21]. 
In addition to the Lenard Jones potential as a 
famous one, the Embedded Atom Potential (EAM), 
Finnis-Sinclair potential [22] and Sutton-Chen 
potential [23, 24] may be addresses as multi-
particle potentials. They may be implemented in 
the simulation of solid structures as well as the bio 
and fluidic fields. However, the solid structures are 
especial nano fields that mentioned potential should 
be improved for better results. The Rafii-Tabar-
Sutton multi-body long-range potential is used in 
the current study which is an extended and improved 
form of Sutton-Chen potential with the capability 
of modeling the unlike material’s interactions. The 
general form of Rafii-Tabar-Sutton (RTS) potential 
for binary A-B unlike materials is [23 , 24]:
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Where  ˆip is the site occupancy operator and defined as: 

i

1 if site i is occupied by an A atom
p̂ =

0 if site i is occupied by an B atom




          ��� 

The functions xyV (r)  and xyΦ (r) are defined as 

  xyxyxy xy naV r =ε [ ]r                   ��� 

  xyxyxy mar =[ ]rΦ                   ���� 

And the constants are defined by 

AA AA AAd =ε C   BB BB BBd =ε C  

1 ( )
2

AB AA BBm m m      AB AA BB1n = (n +n )
2

        ���� 

AB AA BBa = a a    AB AA BBε = ε ε  

Where  is a parameter with the dimensions of energy, 'a' is a parameter with the 
dimensions of length and is normally taken to be the equilibrium lattice constant, 'm' 
and 'n' are positive constants with n>m. This potential has the advantage that all the 
parameters can be easily obtained from the Sutton-Chen elemental parameters of metals 
[24].  
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Where  is a parameter with the dimensions of energy, 'a' is a parameter with the 
dimensions of length and is normally taken to be the equilibrium lattice constant, 'm' 
and 'n' are positive constants with n>m. This potential has the advantage that all the 
parameters can be easily obtained from the Sutton-Chen elemental parameters of metals 
[24].  
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Where ε is a parameter with the dimensions of 
energy, ‘a’ is a parameter with the dimensions of 
length and is normally taken to be the equilibrium 
lattice constant, ‘m’ and ‘n’ are positive constants 
with n>m. This potential has the advantage that 
all the parameters can be easily obtained from 
the Sutton-Chen elemental parameters of metals 
[24]. 
In a lot of existent mechanical systems, the small 
field includes a large area with respect to the atomic 
dimensions. For instance, in nanorobotic devices, 
the nano filed includes some nano and some micro 
parts. So, MD could not cover the simulation of 
nano field alone, yet MD may be modified to apply 
in larger sizes (with limitations in the aspect ratio). 
Clustering the all atom MD model into a coarse 
grained site model, named Coarse Grained MD 
(CGMD), is a simple and effective method for this 
purpose.  

 
3. COARSE-GRAINED  MOLECULAR 
DYNAMICS

Electromechanical processes normally occur on 
the order of nano, micro, milli, and even several 
seconds. In addition, they have higher-than-nano 
dimensions. Therefore, their real dimensions and 
time ranges cannot be determined through the use 
of molecular dynamics method. However, by the 
use of “coarse graining”, larger dimensions, in 
longer time ranges could be modeled. 
Now, since a remarkable method by the name of 
Coarse-Grained Molecular Dynamics (CGMD) has 
been presented for this purpose, while using it here, 
a general description is also provided regarding 
this approach. The CGMD method is based on the 
notion that, if instead of one atom, a larger number 
of atoms are taken as a unit, then, a larger volume 
of material and also more simulation time can be 
considered. Even by utilizing the world’s largest 

and most advanced supercomputers, the molecular 
dynamics simulations cannot be performed for more 
than several microseconds. Various approaches 
have been presented for the CGMD methods [21-
23]. 
The only crucial issue in these models will be the 
manner of predicting and estimating the system’s 
potential. Achieving a good potential for the system 
can be guaranteed through a dimension analysis, 
and by comparing the Radial Distribution Function 
(RDF) of the system with obtained CGMD in the 
NF process; although, other ways also exist for 
this achievement. If, on the average, the nominal 
mass and distance of atoms are on the order of 
' 'cm and ' 'cL , and the nominal mass and distance 
of the CGNF samples are on the order of ‘m’  and 
‘L’, respectively, the following relations could be 
considered for the time steps that are used: 
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max MD

mΔt ~L
kT

    and    c
max cCGMD

mΔt ~L
kT    

      (12)  

We developed a new CGMD approach and validated it with proper results [25]. It has 
been utilized in this paper for the NF.  

5-	Macro-micro	coupling	model	
To generalize the problem, the macro-nano-related problems are divided into two 
groups of closed and open systems. The group of problems, where all the side 
boundaries of the nano domain overlap the interfacial degrees of freedom, are called 
"closed systems"; and the group of problems, where the side boundaries of the nano 
region, in addition to the interfacial degrees of freedom, possess limited (and in some 
cases, unlimited) degrees of freedom, are called "open systems". Figures 1 and 2 
illustrate the general cases of the closed and open systems, respectively. In the closed 
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We developed a new CGMD approach and validated 
it with proper results [25, 26]. It has been utilized in 
this paper for the NF. 

4. MACRO-MICRO  COUPLING  MODEL

To generalize the problem, the macro-nano-related 
problems are divided into two groups of closed and 
open systems. The group of problems, where all 
the side boundaries of the nano domain overlap the 
interfacial degrees of freedom, are called “closed 
systems”; and the group of problems, where the 
side boundaries of the nano region, in addition to 
the interfacial degrees of freedom, possess limited 
(and in some cases, unlimited) degrees of freedom, 
are called “open systems”. Figures 1 and 2 illustrate 
the general cases of the closed and open systems, 
respectively. In the closed system, usually one nano 
field and one macro field exist. For example, in the 
crack propagation problem, the fine region of crack 
propagation is designated as the nano field, and 
the coarse region in which the crack is growing is 
designated as the macro field. In the open system, 
several macro fields could be interacting with 
several nano fields. If the numbers of macro and 
nano fields are equal to M and N, respectively, and 
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the area of each field is indicated byΩ , then for the 
closed system, we can write: 

, ,

, ,

, ,

i j

i j

i j

i j NF
or i j MF

i NF j MF

Ω ∩Ω =∅ ∈

Ω ∩Ω =∏ ∅ ∈
Ω ∩Ω ≠∅ ∈ ∈  

(13)
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In the above relations, ∅  and ∏ denote the 
empty and non-empty spaces, respectively. With 
this notation, it can be easily proved (considering 
the presented definitions) that a closed system is 
a special case of an open system. Therefore, in an 
open system, there may be more than one nano field 
and each of the nano fields may be in contact with 
one another in different ways. 
These contacts (for example in the nanomanipulation 
process using nanorobots) may not occur during 
a certain time range, and after that duration, these 
contacts may be established. Exclusively mechanical 
systems are taken into account, and therefore, the 
mentioned contacts are of the second order only, 
and volumetric sharing is not considered. 

Figure 1: General case definition of closed 
mechanical systems

Figure 2: General case definition of open 
mechanical systems

The concept of multi-scale coupling methods can 
be very useful in cases where we want to model a 
relatively large region of the material in order to 
study the whole deformation field, but the atomic 
and sub-atomic scales are needed only in specific 
and limited regions. A practical example of a closed 
system can be demonstrated in the modeling of crack 
nucleation and propagation. As was mentioned 
before, for such problems, various works have been 
presented. 
The present model has a special application in open 
systems; systems where practically no interface 
may even exist between the macro and nano 
environments in some cases and in a certain range 
of work, while after a certain time duration (which 
could be known or unknown), a relationship may 
form between these two environments. Through the 
use of coupling models for closed environments, 
the size limitation of atomic modeling could 
be minimized, such that an inner region (with 
complex dynamic processes and large deformation 
gradients) could exist inside an outer region (with 
small deformation gradients). It is not like this 
in open systems, where the effect of size will be 
considerable. To demonstrate the effectiveness 
of the model, in this article, the special case of a 
conic region for NF has been investigated. Also, in 
the MF model, an elastic beam with piezoelectric 
properties has been considered. 

4.1. Coupling of MF and NF
For the coupling of MF and NF in closed 
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systems, four regions are considered throughout 
the system shown in Figure 3. These four regions, 
in the order of proceeding from micro to nano 
environments, consist of: Macro Field (MF), 
Unfolded Volume (UV), Interfacial Volume (IV), 
and Nano Field (NF). The IV region is in fact a 
region where the terminal atoms of a NF model 
have surrounded a MF node in the model. The IU 
region is the region between the end nodes of MF 
and the end of the NF model. The two regions of 
MF and NF need no further explanation. In view 
of the presented cases, IVs estimate the mean 
displacements of NF in the center of mass of these 
displacements. These averages are later used 
as the initial conditions of displacements in the 
relevant interfacial nodes. It should be mentioned 
that, the IV need not match the macro element that 
surrounds it, with respect to the size and shape. 
Normally, a macro element, in the interfacial 
section, consists of hundreds to thousands of 
atoms. By taking an effective average for the 
atomic points, the discreteness of the atomic 
structure can be sufficiently homogenized so that 
the MF region responds to the excitations of the 
atomic region as an expanded volume of itself. 

Figure 3: Common region between NF and 
MF in the closed system

 
For the analysis of open systems, in addition to the 
four regions of MF, UV, IV, and NF, two regions 
of Free Boundaries of nano field (denoted by FB) 

Figure 4: Common region between NF and MF in the open system
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and Common Boundaries of nano field (denoted 
by CB) are also defined (Figure 4). Regardless of 
the type of initial state these two regions may have, 
each one has the potential of undergoing different 
changes during the analysis time range. The CB 
region is usually circumscribed around a circular 
zone, because in small dimensions, for considering 
the forces which in this zone are accounted among 
different sections of the nano field, the concept of 
“cut off radius” is used. Moreover, the MF region 
is also divided into four sections of “free far-
fields”, “internal volume”, “boundary field”, and 
“interfacial field”. 
It seems necessary here to describe the method of 
analysis of the FB and CB regions. In order for the 
FB region to behave freely (at surface), changes 
should be made to the model. This is the philosophy 
behind the establishment of the FB region. The 
existence of free surface creates unwanted effects 
in the NF system. 
In comparison with the cases in which the boundary 
is affected by an external load, this occurrence 
in FB is not so critical. In addition to unwanted 
effects, since atoms at the free surface or close to 
it don’t have a complete set of neighboring atoms, 
the coordination between the atoms falls apart. 
To remedy this lack of coordination, and to make 
the atoms stable in the interfacial NF region, two 
approaches can be adopted. The first approach is 
to offer an additional volume of atoms away from 
the center, which forms the surface NF region. The 
second approach is to consider a number of the 
same NF system atoms as an unfolded volume. 
In case of using the first approach, although the 
surface NF region eliminates the effects of the free 
surface, it applies an unwanted virtual stiffness 
to the system, which elastically constrains the 
deformation of the inner NF region. To counteract 
this effect, the unwanted virtual hardness should 
be compensated. Since the effects of surface in 
solids are controllable, to a large extent, by the 
inner volume, in this article, it is suggested to use 
the second approach. Of course, in places where the 
limitation of size exists (like the tip of a cone-shaped 
region), the use of the first approach is inevitable.
During the simulation, the average of k numbers 
of IV, for obtaining the displacement of the center 
of mass is defined as ,

MD
CM kδ


, which, to get the 
statistical displacement vector ,

MD
I kδ


, is averaged 
along M time ranges of NF:

( ), , , ,
1

1 ( ) (0)
M

MD MD
I k CM k CM k j CM kTime

j
r t r

M
δ δ

=

= = −∑
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In the above relation, ,
1

1( ) ( )
kN

CM k j i j
ik

r t r t
N =

= ∑ 
is 

center of mass of the kth IV, which has kN atoms 

in the position ir


at time jt of the jth NF time range. 
In open systems, in order for the NF region to 
behave freely (at surface) or to be subjected to 
specific external forces, some alterations should be 
made in the model. This is the philosophy behind 
the establishment of the UV region. In the best case, 
when the free movement of the surface is intended, 
the existence of the free surface produces unwanted 
effects in the NF system. 
This event, in cases where an external force is 
considered instead of the free movement, will be 
much worse. In addition to unwanted effects, since 
atoms at the free surface or close to it don’t have a 
complete set of neighboring atoms around them, the 
coordination between the atoms falls apart. 
To reduce this lack of coordination, and to make 
the atoms stable in the interfacial NF region, an 
additional volume of atoms far from the center, 
which forms the surface NF region, is offered. On 
the other hand, although the surface NF region 
eliminates the effects of the free surface, it applies 
an unwanted virtual stiffness to the system, which 
elastically constrains the deformation of the inner 
NF region. Due to the particular complexity of 
the problem, in this report, a simple, and at the 
same time, effective procedure is presented for the 
calculation of virtual hardness. 

4.2. Algorithm for establishment of coupling
In general, the coupling of MF and NF is 
accomplished through schemes based on the 
establishment of iterative equilibrium between these 
two regions. In these schemes, the iterations begin 
with the displacements of the MF and NF interface. 
These displacements are obtained as statistical 
average from the atomic positions of every IV, and 
by averaging in the time duration of NF. These 
average displacements are then applied in the MF 
region, as displacement boundary conditions ( Iδ


). 

Then, the obtained MF boundary value problem is 
solved to yield the new interfacial reaction forces, 
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i.e. IR

. Then, these forces are applied to the atoms 

located in IVs; and so, the fixed-reaction boundary 
conditions are defined in the NF system. During 
the iterations in which MF is solved, the reaction 
boundary conditions are fixed, and they are applied 
to the NF region to guarantee the correct application 
of the elastic field from the MF domain. In solving 
the problems of statics, the iteration cycle of NF 
and MF continues until the system reaches a lasting 
equilibrium of displacements and forces between the 
continuum and atomic fields. While for the problems 
of dynamics, after the establishment of static 
equilibrium (using the aforementioned method), the 
system should be dynamically solved (generally via 
numerical methods). This issue constitutes one of 
the substantial complexities of the present work.
Here, through a unique algorithm, the manner of 
analysis of mechanical dynamic problems will be 
presented. By considering the dynamics in the MF 
model, dynamic continuum equations in the nth MF 
step at time nt are given as: 
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( (t ), (t ), (t ),...)= t )n n n n
 E Þ Þ Þ R(               (16) 

where E is the term related to the equations extracted from the system's internal energy, 
which in different methods, are functions of (t )nÞ s (the studied variables of the 
system) and of different orders of their derivatives. Also, at different times, function 

t )nR( is the function resulting from external loads applied to the system and 
proportionate to the orders of the system. 

In problems that possess natural and forced boundary conditions and, at the same time, 
are supposed to be used in multi-scale coupling models, the degrees of freedom should 
be divided into several groups. The first group includes the degrees of freedom that are 
governed by the natural boundary conditions. This group will be designated by F. The 
free boundary condition is the most usual condition of this group. The second group 
includes the degrees of freedom that are governed by the forced boundary conditions. 
This group will be designated by B. In many problems related to dynamics of solids, 
the clamped boundary condition can be regarded as a forced boundary. Also, in the area 
of fluid dynamics, the no-slip conditions at the surface can be mentioned. The third 
group is the degrees of freedom that are included in the inner points of the domain. This 
group will be designated by V. The fourth group is the degrees of freedom that are 
supposed to be coupled with the common degrees of freedom in molecular dynamics. 
This group will be designated by I. The matrices related to the degrees of freedom of 
general equation (1) are reduced, based on these definitions. Therefore,E is broken 
down as [ ]E , in which , , , , .V F I B   V indicates the internal MF region, F is the 

far-field variables, I is the variables of the interface, and B is the variables of the MF 
boundary conditions. Using these definitions, the dynamic continuum equations in the 
nth step of MF at time nt are expressed as:  

( (t ), (t ), (t ),...)= t ),                   , , ,n n n n V F I B 
f fE Þ Þ Þ R ( f     (17)  

It should be noted here that (t )nÞ includes all the degrees of freedom in every set of 
equations. The general state of a multi-scale problem includes the initial value and the 
external forces problems.  

5-2-1	Initial	value	problem	
The general equations of motion of the macro system's displacement, when no external 
forces exist, are as follows:  

( (t ), (t ), (t ),...)=0n n n
 E Þ Þ Þ                 (18)

In any case, whether the problem pertains to the subject of solids or fluid dynamics, the 
general dynamic displacement vector could be expressed as follows:  

(t)= t) t) Þ u( g(                   (19)
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have: 
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where t) g( and t)u( are the vector of initial degrees of freedom and the elastic vector of 
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And thus, the initial value problem is converted into the external force problem. If the 
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disregarded, and the effects of the considered orders are assumed as linear (like many 
common methods, including the finite element), then the equations can be rewritten as 
follows: 
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{ , , , }V F B Iu u u u , can be obtained by solving the above state equation and by applying 
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The dynamics of the atom i with mass m(i), at the position r(i), and in the NF regions are 
described through the Newton's equations of motion. Thus, for different regions 
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considered orders are assumed as linear (like many 
common methods, including the finite element), 
then the equations can be rewritten as follows:
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where t) g( and t)u( are the vector of initial degrees of freedom and the elastic vector of 
the whole system, respectively. By substituting the general dynamic displacement 
vector in the equation of motion, and using the principle of superposition, we have:  
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effects of orders higher than the second derivative of the degrees of freedom are 
disregarded, and the effects of the considered orders are assumed as linear (like many 
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In the common boundaries of the NF region, some magnitude of force, which arises 
from the forces of atoms inside the cut-off radius of the contact surface of two NF 
fields, should be considered. It should be mentioned that, except in the areas of direct 
contact between surfaces (where the effect of friction is modeled with the inclusion of 
some impacts), in the above equations, the viscous friction force D

if  is uniformly 
applied to the atoms inside the IVs and UVs. Throughout the integration of the above 
equations for a period of MΔt =MΔt  (where M is the number of time steps and Δt is the 
time step duration), the new average displacements are determined by equation (1). The 
new atomic displacements for the next MF step at time n+1 n Mt =t +Δt  are again applied 
in equations (6) and (7a) for the calculation of forces in the next iteration step. The 
complete algorithm for the simulation of coupling has been given in Figure 5. 
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in which, 
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where t) g( and t)u( are the vector of initial degrees of freedom and the elastic vector of 
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if , which result from their neighboring atoms. The atoms existing 

in the interfacial NF region (which belong to the kth IV) also experience an additional 
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) which is distributed among k
IN atoms. In addition, the continuity of the 

fields of the zero- and first-order degrees of freedom should be guaranteed in it. The 
atoms existing in the surface NF region (which belong to the kth UV) also experience an 
opposing force ( k

cuvf


) which is distributed among k
SN atoms. Moreover, they tolerate the 

force of k
Auvf


due to the crushing of the system, which itself should be divided by 
k
SN atoms.  
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In the common NF region (for the kth CB)

The atoms in the inner NF region only experience 

the atomic force and the frictional forces of 
D
if , which result from their neighboring atoms. The 
atoms existing in the interfacial NF region (which 

belong to the kth IV) also experience an additional 
force  which is distributed among k

IN atoms. In 
addition, the continuity of the fields of the zero- and 
first-order degrees of freedom should be guaranteed 
in it. The atoms existing in the surface NF region 
(which belong to the kth UV) also experience an 
opposing force  which is distributed among 

k
SN atoms. Moreover, they tolerate the force of 
 due to the crushing of the system, which itself 

should be divided by k
SN atoms. 

In the common boundaries of the NF region, some 
magnitude of force, which arises from the forces of 
atoms inside the cut-off radius of the contact surface 
of two NF fields, should be considered. It should be 
mentioned that, except in the areas of direct contact 
between surfaces (where the effect of friction is 
modeled with the inclusion of some impacts), in 
the above equations, the viscous friction force D

if  
is uniformly applied to the atoms inside the IVs 
and UVs. Throughout the integration of the above 
equations for a period of  (where M is the 
number of time steps and  is the time step duration), 
the new average displacements are determined by 
equation (1). The new atomic displacements for 
the next MF step at time  are again 
applied in equations (6) and (7a) for the calculation 
of forces in the next iteration step. The complete 
algorithm for the simulation of coupling has been 
given in Figure 5.
In the following sections, three examples of systems 
in solid mechanics, which could be considered 
as candidates for using the proposed method, 
are presented. The first example (as a sample of 
a closed system) investigates the penny shaped 
cracks. The second example (as a sample of a semi-
open system), follows up on the effects of macro 
dynamics on the crack nucleation and propagation. 
Also, the third example demonstrates a not-so-
complete arrangement of the probe tip in a Scanning 
Probe Microscope (SPM). 

5. EXAMPLES  AND  DISCUSSIONS

5.1. Penny shaped cracks (closed system)
Generally, the propagation or even nucleation of 
many cracks is due to certain structures and behaviors 
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in nanoscale and smaller. Dislocations inherently 
exist in many solid state systems, and in some cases, 
they emerge as a result of certain reactions. They can 
grow and take a shape similar to a penny. Basically, 
the model of a penny shaped crack can be obtained 
by eliminating one or several particles in atomic 
models. Here, by using the presented approach, a 
closed system has been considered, in which a nano 
field is surrounded by the nodes of a macro field. 
Then several particles are eliminated from the nano 
field, so that the behavior of the macro and nano fields 
could be investigated due to the formation of crack. 
One of the significant applications of this example is 
the recognition of the complete behavior of a closed 
system as a result of changes occurring in the nano 
environment; it can lead to the prediction of events 
in the nano environment by using the observations of 
the macro parts. 

Figure 6: The penny shape crack 
(nano field is enlarged)
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First, consider the extension problem due to a tension force. A force large enough is 
applied to the free end of the cantilever to deform the NF part. Deformations of the NF 
along the time have been shown in Figure 7. As can be observed, in a relatively long 
time, a series of initial deformations occurs in the NF. After the elapse of certain time, 
the deformations are considerably enlarged. Upon the yield point of the NF, 
deformations grow more and more.  

t=0 ns  t=1 ns  t=1.2 ns 

t=1.8 ns  t=2.7 ns  t=3.2 ns 

t=3.7 ns  t=4.1 ns  t=4.7 ns 
Figure 7. Effect of applying tensile load on the penny shaped crack 

Now, consider the problem of compression of the free end of the cantilever. A force 
large enough is applied to the free end of the cantilever to deform the NF. Deformations 
of the NF region have been illustrated in Figure 8. The behavior of this system is very 
similar to the previous case (although, in the reverse direction); with the difference that 
the processes take longer time because of the higher resistance of the system to 
compression. As the figure shows, in a relatively long time, a series of initial 
deformations occur in the NF. 

Figure 7: Effect of applying tensile load on the penny shaped crack
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As it has been depicted in Figure 6, the considered 
system consists of an aluminum plate with 
dimensions of 1µ×1µ which is clamped at left 
end, and a square-shaped part of its midsection 
(1nm1×nm) is considered as a nano environment. 
An elliptical crack with the large diameter about 
0.4 nm and the small diameter of 0.05 nm has been 
considered in the center of the nano environment.
First, consider the extension problem due to a 
tension force. A force large enough is applied to 
the free end of the cantilever to deform the NF 
part. Deformations of the NF along the time have 
been shown in Figure 7. As can be observed, in a 
relatively long time, a series of initial deformations 
occurs in the NF. After the elapse of certain time, 
the deformations are considerably enlarged. Upon 
the yield point of the NF, deformations grow more 
and more. 

Now, consider the problem of compression of the 
free end of the cantilever. A force large enough 
is applied to the free end of the cantilever to 
deform the NF. Deformations of the NF region 
have been illustrated in Figure 8. The behavior 
of this system is very similar to the previous 
case (although, in the reverse direction); with 
the difference that the processes take longer time 
because of the higher resistance of the system to 
compression. As the figure shows, in a relatively 
long time, a series of initial deformations occur 
in the NF.
With a finer sketch, the small reshaping of plate 
may be observed. Figure 9 shows the finer sketch 
by enlarging the size of atoms in view for some 
snapshots of Figure 8. It can be observed that the 
area of hole is decreasing along the time and it 
moved to right and finally exits from the end right. Dynamics	of	Macro–Nano	Mechanical	Systems;	Fixed	Interfacial	Multiscale	Method
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t=2.3 ns  t=2.8 ns  t=3.8 ns  t=4 ns 

t=4.3 ns  t=4.6 ns  t=5.1 ns  t=5.8 ns 
Figure 8. Effect of applying compressive load on the penny shaped crack 

With a finer sketch, the small reshape of plate may be observed. Figure 9 shows the 
finer sketch by enlarging the size of atoms in view for some snapshots of Figure 8. It 
can be observed that the area of hole is decreasing along the time and it moved to right 
and finally exits from the end right. This is due to the stiffness of macro scale model at 
the end left.  

   
t=1.4 ns  t=2.8 ns  t=3.8 ns 

   
t=4 ns  t=4.3 ns  t=4.6 ns 
Figure 9. The fine sketch of deformation in compression test 

Figure 8: Effect of applying compressive load on the penny shaped crack
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This is due to the stiffness of macro scale model at 
the end left. 
The third problem involves the behavior of the 
system due to the environment’s temperature 
increasing. By using the classical NVT algorithm, 
system’s temperature has been increased. It has 
been observed that by applying the relatively large 
amounts of heat, the crack area is reduced, but not 
eliminated. However, it leans to move along the 
right direction. 

5.2. Macro dynamics effect on the propagation of 
cracks (semi-open system)
Despite the fact that in many cases, the nucleation 
and propagation of a crack begins within an object, 
there are also many cases in which the nucleation 
and propagation of crack is caused by a macro 
force. To show the capability and effectiveness of 
the suggested method for semi-open problems, the 
process of nucleation and propagation of cracks due 
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The third problem involves the behavior of the system due to the environment's 
temperature increasing. By using the classical NVT algorithm, system's temperature has 
been increased. It has been observed that by applying the relatively large amounts of 
heat, the crack area is reduced, but not eliminated. However, it leans to move along the 
right direction.  

t=0 ns  t=1.2 ns  t=1.6 ns  t=1.9 ns 

 
t=2.5 ns  t=2.8 ns  t=3.6 ns  t=4 ns 

Figure 10. Effect of applying thermal load on the dislocation 

6-2-	Macro	dynamics	effect	on	the	propagation	of	cracks	(semi-open	system)	
Despite the fact that in many cases, the nucleation and propagation of a crack begins 
within an object, there are also many cases in which the nucleation and propagation of 
crack is caused by a macro force. To show the capability and effectiveness of the 
suggested method for semi-open problems, the process of nucleation and propagation 
of cracks due to an external load on the edge of a slotted plate is analyzed. 

The considered system consists of an aluminum plate with dimensions of 1µ×1µ which 
is clamped at left end, and a square-shaped part of its midsection (1nm×1nm) is 
considered as a nano environment. The slot in the Figure 11 clearly shows the positions 
of the macro and nano fields. 

 
Figure 11. Macro and nano fields in the case of nucleation and propagation of crack caused by the 

application of mechanical load 

Figure 10: Effect of applying thermal load on the dislocation
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to an external load on the edge of a slotted plate is 
analyzed.
The considered system consists of an aluminum 
plate with dimensions of 1µ×1µ which is clamped at 
left end, and a square-shaped part of its midsection 
(1nm1×nm) is considered as a nano environment. 
The slot in the Figure 11 clearly shows the positions 
of the macro and nano fields.

Figure 11: Macro and nano fields in the case of 
nucleation and propagation of crack caused by the 

application of mechanical load

First, we examine the application of tensile load on 
the edges of the macro slot. The deformation of NF 
has been illustrated in Figure 12. As it is shown, 
the NF system resists for a long time against the 
application of the load, but it eventually yields to the 
load and deforms considerably. When compressive 
load is applied and the edges have been closed 
to each other in the MF environment, although 
absolute yield doesn’t happen, but very small and 
localized dislocations are observed in the form of a 
relatively harmonic wave. 

5.3. Dynamic movement of a nano object on the 
tip of a cantilever probe (open system)
In many cases (like in cell manipulation or imaging 
processes), it is necessary to use a relatively large 
surface to displace the environment which hold the 
cell from one location to another. Here, it is assumed 
that, instead of a cell, we want to investigate the 
behavior of a very small solid metal object as a 
result of the movement of its base, by using a metal 
plate in larger dimensions. Assume a rectangular 
shape plate (like the two-dimensional case of a 
cantilever, or an approximation of the configuration 
of an AFM probe tip), with the dimensions given in 
the Figure 14.
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First, we examine the application of tensile load on the edges of the macro slot. The 
deformation of NF has been illustrated in Figure 12. As it is shown, the NF system 
resists for a long time against the application of the load, but it eventually yields to the 
load and deforms considerably. When compressive load is applied and the edges have 
been closed to each other in the MF environment, although absolute yield doesn't 
happen, but very small and localized dislocations are observed in the form of a 
relatively harmonic wave.  

t=0 ns  t=12 ns  t=15.9 ns 

t=21.8 ns  t=28.5 ns  t=29.3 ns 
Figure 12. Nano field in the case of nucleation and propagation of crack due to the application of 

macro-mechanical load; tension problem 

t=0 ns  t=15.1 ns  t=20 ns 

t=31.5 ns  t=36 ns  t=41.2 ns 
Figure 13. Nano field in the case of nucleation and propagation of crack due to the application of 

macro-mechanical load; compression problem 

Figure 12: Nano field in the case of nucleation and propagation of crack due to the application of macro-
mechanical load; tension problem
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Figure 14: Dimensions and characteristics of the 
coupled system

We consider a system in nano dimensions and with the 
properties of silicone as a body (particle) attached to 
this cantilever. The cantilever is fixed at the top, and 
its base is moved with a constant velocity. As Figure 
15 shows, the movement of this system is very similar 
to the movement of a rigid body. Considering the 
assumption that both fields are metallic, this conclusion 
seems reasonable. Of course, to demonstrate the 
existence of considerable force in the interface of the 
two fields, the RI forces have been shown in horizontal 
and vertical directions, in Figure 16.
Now assume that a nano object, but with bioorganic 
characteristics (which are often viscoelastic 
properties), is located on the cantilever beam. For a 
more reasonable effect of the macro environment on 
the nano environment, the macro-cantilever is also 
assumed to be made of a more flexible material. As 
Figure 17 shows, a flexible deformation will occur 
in the nano field. 
In Figure 18, the diagram of the normalized average 
displacement of NF particles together with the 
normalized displacement of the node adjacent to 
NF has been plotted in the MF environment. It is 
obvious that the movement of NF is in the vicinity 
of the node adjacent to MF, and it only has small 
oscillatory motions around it.
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First, we examine the application of tensile load on the edges of the macro slot. The 
deformation of NF has been illustrated in Figure 12. As it is shown, the NF system 
resists for a long time against the application of the load, but it eventually yields to the 
load and deforms considerably. When compressive load is applied and the edges have 
been closed to each other in the MF environment, although absolute yield doesn't 
happen, but very small and localized dislocations are observed in the form of a 
relatively harmonic wave.  

t=0 ns  t=12 ns  t=15.9 ns 

t=21.8 ns  t=28.5 ns  t=29.3 ns 
Figure 12. Nano field in the case of nucleation and propagation of crack due to the application of 

macro-mechanical load; tension problem 

t=0 ns  t=15.1 ns  t=20 ns 

t=31.5 ns  t=36 ns  t=41.2 ns 
Figure 13. Nano field in the case of nucleation and propagation of crack due to the application of 

macro-mechanical load; compression problem Figure 13: Nano field in the case of nucleation and propagation of crack due to the 
application of macro-mechanical load; compression problem
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Figure 15. Displacement of the MF and NF fields due to the displacement of the MF base in the x-

y plane; movement of a hard system  
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Figure 16. Interfacial forces (RI) in horizontal and perpendicular directions for the movement of a 
metallic nano field on a metallic macro field 

Now assume that a nano object, but with bioorganic characteristics (which are often 
viscoelastic properties), is located on the cantilever beam. For a more reasonable effect 
of the macro environment on the nano environment, the macro-cantilever is also 
assumed to be made of a more flexible material. As Figure 17 shows, a flexible 
deformation will occur in the nano field.  
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metallic nano field on a metallic macro field

Figure 15: Displacement of the MF and NF fields due to the displacement of the 
MF base in the x-y plane; movement of a hard system 

6. CONCLUSION

A method has been presented for the coupling of the 
continuum and atomic scales together. In the present 
model, the undesirable effects of free surfaces, 
common surfaces, and surfaces close to the interface 
with the macro field have been removed, and after 
offering a practical and notable procedure for the 
dynamics of systems in general, seven problems (in 
the form of three examples) have been presented 
to showcase the practicality, simplicity, and the 
effectiveness of this method. 

To generalize the issue, the macro/nano-related 
problems were divided into two groups of closed 
and open systems. Then, the damped dynamics 
of these systems in general cases were presented. 
Also, by using the presented approach, several 
examples of the closed, open, and semi-open 
cases were solved. The crack nucleation and 
propagation due to the macro dislocation (a penny 
shaped crack) was explored. The most important 
outcome of this example is the considerable 
influence of dislocation on the propagation of 
crack. 
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As a case for a semi-open system, the process of 
nucleation and propagation of cracks due to the 
application of an external load on the edge of a 
slotted plate was presented. In the problem dealing 
with the application of tensile load on the edges of 
the macro slot, the NF system resists for a long time 
against the application of the load, but it eventually 
yields to the load and undergoes deformation. In 
addition, as a case of open system, two metallic and 
bioorganic nanorobotic systems were considered 

via the attachment of an object (particle) to the 
cantilever probe. Rigidity of the first case and the 
considerable flexibility of the second case were 
demonstrated. With respect to the obtained results, 
it was demonstrated that the presented method 
can be applied for the simulation of systems with 
considerable dimensions, and for relatively large 
time ranges. The use of coarse-grained molecular 
dynamics (CGMD) in this method has made this 
capability possible. Also, the use of finite element 
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Figure 17. Displacement of the MF and NF fields due to the displacement of the MF base in the x-

y plane; movement of a soft system  

In Figure 18, the diagram of the normalized average displacement of NF particles 
together with the normalized displacement of the node adjacent to NF has been plotted 
in the MF environment. It is obvious that the movement of NF is in the vicinity of the 
node adjacent to MF, and it only has small oscillatory motions around it. 
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Figure 18. Displacement of the MF and NF fields due to the displacement of the MF base in the x 
and y directions  

7-	Conclusion	
A method has been presented for the coupling of the continuum and atomic scales 
together. In the present model, the undesirable effects of free surfaces, common 
surfaces, and surfaces close to the interface with the macro field have been removed, 
and after offering a practical and notable procedure for the dynamics of systems in 
general, seven problems (in the form of three examples) have been presented to 
showcase the practicality, simplicity, and the effectiveness of this method. To 
generalize the issue, the macro/nano-related problems were divided into two groups of 

Figure 17: Displacement of the MF and NF fields due to the displacement of the MF base in the x-y 
plane; movement of a soft system 
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Figure 17. Displacement of the MF and NF fields due to the displacement of the MF base in the x-

y plane; movement of a soft system  

In Figure 18, the diagram of the normalized average displacement of NF particles 
together with the normalized displacement of the node adjacent to NF has been plotted 
in the MF environment. It is obvious that the movement of NF is in the vicinity of the 
node adjacent to MF, and it only has small oscillatory motions around it. 
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Figure 18. Displacement of the MF and NF fields due to the displacement of the MF base in the x 
and y directions  
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A method has been presented for the coupling of the continuum and atomic scales 
together. In the present model, the undesirable effects of free surfaces, common 
surfaces, and surfaces close to the interface with the macro field have been removed, 
and after offering a practical and notable procedure for the dynamics of systems in 
general, seven problems (in the form of three examples) have been presented to 
showcase the practicality, simplicity, and the effectiveness of this method. To 
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Figure 18: Displacement of the MF and NF fields due to the displacement of the MF base 
in the x and y directions 
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method, and the presentation of an element which is 
capable of being applied for the electromechanical 
systems, has greatly expanded the range of 
application of this method. 
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