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Abstract 
   In this paper, numerical results obtained and explained from an exact formula in relation to sound 

pressure load due to the presence of liquid inside the finite-length non-rigid carbon nanotubes (CNTs), 

which is coupled with the dynamic equations of motion for the CNT. To demonstrate the accuracy of this 

work, the obtained formula has been compared to what has been used by other researchers. For this 

purpose, the solution of the modified complex Helmholtz equation was derived by considering the non-

rigidity of the CNT and the wave reflections at the open ends of the CNT for three different liquids with 

or without considering the relaxation time. The results showed that neglecting the non-rigidity of CNT 

would cause a decrease on the pressure fluctuations and the pressure associated with the viscosity force 

of the liquid in the liquid-filled CNT, at both axi-symmetric, and asymmetric cases. Also, it is showed that 

the viscous liquid in a CNT is a dispersive medium for sound wave propagation and ignoring the energy 

loss in the liquid in the high frequency analysis and ignoring the non-rigidity of the CNT would cause 

errors in the prediction of the sound pressure load exerted on the finite-length liquid-filled CNT. 

Keywords: Finite-length liquid-filled CNT, Viscosity force, Modified complex Helmholtz equation, 

Non-rigidity, Sound pressure load. 

 

1. INRODUCTION 

   The acoustical transition behavior of 

CNTs could be excessively sensitive to 

even very small deformations of their 

geometry [1-3]. Due to this property, the 

study on vibrational characteristics of 

wave propagation in CNTs under real 

conditions without facile assumptions is 

very important for designing CNT-based 

nanocomposites [4-11] and nano-devices. 

Owing to nanometer dimensions of CNTs, 

it is difficult to set up controlled 

experiments to measure the properties of 

an individual CNT. The nonlocal-elastic 

beam [12-21], plate [22, 23] and shell [24-

28] models could predict the vibrational 

behavior of the CNTs much better than the 

traditional elastic shell [29-36] models. 

In previous studies, in order to obtain an 

analytical solution, the cylindrical shell has 

been assumed as an infinite-length shell 

which would cause an error in the 

vibrational analysis and wave propagation 

when it is finite in length, particularly as 

the length of the shell is equivalent to its 

radius [37]. To the author’s knowledge, 

there have been no studies on sound wave 

propagation in finite-length CNTs where 

reflective waves from two open ends of the 

CNTs are being taken into account [29, 30, 

38] except that of the author’s own work 

[28]. Another point that has not been 

formally researched on is the non-rigidity 

of the CNT [25, 26, 29-32, 38-41]. In this 

paper, the non-rigidity effect of the carbon 

nanotube (CNT) on sound pressure is 

studied through considering finite 

acoustical impedance on the wall of the 

CNTs. Due to the fact that the vibrational 

frequencies of the CNT are approximately 

terahertz (THz) owed to its extremely 

small dimensions, the relaxation time 

effect must be considered through the 
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dissipative wave equation due to the high 

frequency vibrational analysis needed for 

the liquid-filled CNT. Although, acoustic 

wave propagation in elastic tubes 

containing viscous fluid is not a new issue 

[42, 43], there have been only a few 

investigations on the wave propagation in 

viscous-fluid-conveying CNTs [38]. It is 

important to note that due to the properties 

of CNTs research on the existence of fluid 

within CNTs is essential especially in 

acoustic wave propagation applications. 

In this paper, numerical results obtained 

and explained from an exact formula 

obtained from the author’s related work as 

in [28] for sound pressure load through the 

existence of liquid inside the finite-length 

non-rigid carbon nanotubes (CNTs), which 

is coupled with the dynamic equations of 

motion for the CNT. The liquid relaxation 

time effect and the non-rigidity effect of 

the CNT are investigated in detail, for the 

liquid load acting inside the CNT. To study 

the sound wave propagation in CNTs 

under real conditions, the simplifying 

assumptions are avoided, as much as 

possible.  

 

2. MODELLING THE FINITE-

LENGTH LIQUID-FILLED NON-

RIGID CNT 

Liquid load has an important role in 

vibrational analysis of the liquid-filled 

CNT. To determine f, the sound pressure 

acted on the liquid-filled CNT due to the 

sound wave propagation must be 

calculated. In this study, numerical results 

obtained and explained from an exact 

formula obtained in [28] for sound 

pressure load due to the existence of liquid 

inside the finite-length non-rigid carbon 

nanotubes (CNTs) coupled with the 

dynamic equations of motion for the CNT. 

For this purpose, the non-rigid CNT is 

modeled as a thin cylindrical shell with 

radius R and thickness h in cylindrical 

coordinates ( , , )r x , where x is the 

coordinate in the axial direction, r is the 

radial direction, and   is the 

circumferential direction (see Figure 1).  

In [28], the author’s obtained the 

“modified complex Helmholtz equation” (
2 2 0p k p   ) that describes the sound 

pressure in a viscous liquid (real media), in 

which 2  is the Laplacian operator, p is 

the pressure of sound and k  is a complex 

wave number that is given as 

f
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
 

 

 (1) 

in which   2
B f f4 3 C      is called 

“relaxation time” [44] in which, η is the 

shear viscosity coefficient, ηB is the bulk 

viscosity coefficient, f  is the equilibrium 

density of the media and fC  is the speed 

of sound in the media. Henceforth, in real 

media, sound wave propagation causes 

energy dissipation. 

 
Figure 1.  Cylindrical coordinates. 

 

To determine the exact liquid load term 

due to the sound wave propagation inside 

the finite-length viscous-liquid-filled CNT, 

the solution of the modified complex 

Helmholtz equation is derived by 

considering the non-rigidity of the CNT 

and the wave reflections at the open ends 

of the CNT. 

The complex wave number (Eq. (1)) 

can be rewritten as 

ik K     (2) 

where ζ is decay coefficient that describes 

energy dissipation.  

Squaring of Eqs. (1) and (2) gives, 

respectively: 
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in which 
2 2 , 2A K B K      (5) 

and complex conjugate of Eq. (4) gives 
2( ) ik A B     (6) 

A  and B  can be calculated from Eqs. 

(4) and (6) in terms of 2k  and 2( )k   as 

follows: 
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By substituting Eq. (3) and its complex 

conjugate into Eq. (6), Eq. (7) gives 
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By considering Eqs. (5) and (8), we 

have 
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Therefore, K  and   can be calculated 

from Eq. (9) as 
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(10) 

Since the amplitude of sound pressure 

wave in a real media decays as exp( )x , 

  is the absorption or decay coefficient. 

The real part of the complex wave number 

takes part in the wave phase velocity. The 

imaginary part of the complex wave 

number is equivalent to the sound wave 

absorption in the fluid. If 0  , Eq. (10) 

allows K  to be equal to fk C  where 

k  is the free field wave number and   is 

the angular frequency. 

Now, one may compare the Helmholtz 

equation with the modified complex 

Helmholtz equation. As mentioned before, 

the vibrational frequencies of the CNT are 

in the range of THz because of its 

extremely small dimensions. In addition, 

the typical values of   are about 1210 s  

for all liquids except the highly viscous 

ones, like glycerin [44]. Thus, the 

assumption that 1   fails for the 

frequency range of THz, and would cause 

an error in the sound wave propagation 

analysis of the liquid-filled CNT. 

Figure 2 shows the non-dimensional 

wave number versus non-dimensional 

frequency of the modified Helmholtz 

equation. The real part of the non-

dimensional wave number decreases by 

increasing  . The imaginary part of the 

non-dimensional wave number initially 

increases by increasing   and then 

decreases by increasing  . 

 
Figure 2. Non-dimensional wave number 

versus non-dimensional frequency. 

 

For example, it is supposed that the sound 

pressure wave propagates in liquid-filled 

CNT. The properties of several liquids are 

listed in Table 1 [44].  
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Table 1. The properties of liquids [44]. 
Fluid Temperature 

( C ) 

Density, 

f  (kg/m
3
) 

Speed, 

fC  

(m/s) 

Relaxation time, 

  (s) 

Alcohol 

(ethyl) 20 790 1150 
1210   

Turpentine 20 870 1250 
1210  

Water 

(fresh) 20 998 1481 
1210  

 

 
Figure 3. (a) The real part and (b) the imaginary part of the complex wave number of 

modified complex Helmholtz equation versus frequency in comparison with the wave number 

of Helmholtz equation. 

 

   Figures 3(a) and 3(b) show the real part 

and the imaginary part of the complex 

wave number, respectively. The inviscid–

liquid (i.e. 0  ) curves in the mentioned 

figures are obtained from the Helmholtz 

equation (i.e. 2 2 0p k p   ). The 

viscous–liquid (i.e. 0  ) curves are 

obtained from the modified complex 

Helmholtz equation (i.e. 2 2 0p k p   ). 

Figure 3 shows the wave number of the 

Helmholtz equation (i.e. f , 0k C   ) 

and the modified complex Helmholtz 

equation (i.e. , 0k K i    ) in 

comparison with each other, clearly. 

Figure 3(a) shows that the real part of the 

wave number in the modified complex 

Helmholtz equation is much less than the 

wave number of the Helmholtz equation. 

Also, the real part of the wave number in 

the modified complex Helmholtz equation 

is approximately insensitive when 

increaseing the frequency, especially by 

increasing the characteristic impedance of 

the liquids. The wave number of 

Helmholtz equation decreases by increase-

ing the characteristic impedance of the 

liquids. As it is shown in Figure 3(b), the 

imaginary part of wave number in the 

Helmholtz equation is zero. However, the 

imaginary part of wave number in the 

modified complex Helmholtz equation 

increases by increasing the frequency in 

THz range. This increase is due to the 

effect of   as in Eq. (10). Also, Figure 

3(b) shows that the imaginary part of the 

wave number in the modified complex 

Helmholtz equation decreases by increase-

ing the characteristic impedance (i.e. f fC

) of the viscous liquids.   

The phase velocity represents the rate 

at which energy is transported, and is given 

via phasec K . From Eq. (10), the phase 

velocity can be derived as 
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Figure 4 shows the non-dimensional phase 

velocity versus the frequency. The non-

dimensional phase velocity increases by 

increasing the frequency. Since the phase 

velocity is a function of frequency, the 

viscous liquid in a CNT is a dispersive 

medium for sound wave propagation. 

By neglecting the relaxation time effect, 

the phase velocity (Eq. (11)) is equal to Cf. 

It could be concluded that for high 

frequency sound wave propagation analysis 

of the liquid-filled CNT, the relaxation time 

or viscosity of the fluid must be considered 

through the modified complex Helmholtz 

equation. 

 
Figure 4. Non-dimensional phase velocity 

versus non-dimensional frequency. 

 

   The liquid load is exerted on the inside 

of the finite-length non-rigid CNT due to 

the sound wave propagation is 

( , , , )f P R x t  obtained by the author of 

this paper in [28] as 
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  where R is the shell radius and 

f fC Z   the acoustic specific 

admittance  , in which  r r R
Z p V


  is 

the acoustic impedance, where p and Vr are 

pressure and normal velocity on the wall, 

respectively. Also, r
mn  are the radial 

wave numbers where m=0,1,2,… is 

circumferential order m and n=1,2,… is the 

axial half-wave number, J  is the first 

derivative of the first kind of Bessel 

function with respect to its argument, and 

2 2
x r( )mn mnk    is the complex axial 

wave number whereas the previous 

researchers are considered the real axial 

wave number due to the neglecting of the 

energy loss in the liquid [29, 30] where 

x x

x x

Re( ) and Im( ) 0   for  0

Re( ) and Im( ) 0   for  0

mn mn
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x

x
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Thus, the complex sound pressure 

amplitude inside the liquid-filled finite-

length non-rigid CNT per unit length, due 

to the sound wave propagation is as 
2

f r
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(13) 

The real part of Eq. (12) is the pressure 

amplitude fluctuation in the liquid and the 

imaginary part is the pressure amplitude 

associated with the viscosity force of the 

liquid. 

   Until now, the acoustic admittance of the 

CNT wall has been ignored by other 

researchers for sound wave propagation 

analysis in the CNT. The CNT has been 

considered as a perfectly rigid wall 

cylindrical shell with an infinite acoustical 

impedance. Henceforth, the second term in 

the denominator of Eq. (13) has not been 

considered in the calculations, which 

would cause an error in the prediction of 

the sound pressure acted on the liquid-

filled finite-length non-rigid CNT due to 

the effect of the liquid load term, in the set 

of coupled dynamic equations in its 

vibrational analysis. In the following 
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section, it is shown that considering the 

non-rigidity of CNT and the energy loss 

effect on the sound pressure in the liquid-

filled finite-length CNT is essential. 

 

3. RESULTS AND DISCUSSIONS  

In this section, the complex sound 

pressure amplitude (Eq. (13)) inside a 

liquid-filled CNT with a radius of 0.678 

nm and length of 29.5 nm [25], is 

investigated for the lowest axial half-wave 

mode in simply supported boundary 

conditions at both ends. The CNT with 

different wall acoustic admittances (for 

rigid, 0  , and for non-rigid, 0   

[45]) are applied. It is supposed that the 

CNT is inviscid or viscous-liquid-filled. 

 

 
Figure 5. (a) The pressure fluctuations and (b) the pressure associated with the viscosity 

force of the liquid versus frequency inside the liquid-filled rigid and non-rigid CNT in m=0. 

 

  Figures 5(a) and 5(b) show the pressure 

amplitude fluctuations (the real part of the 

Eq. (13)) and the pressure amplitude 

associated with the viscosity force of the 

liquid (the imaginary part of the Eq. (13)) 

inside the liquid-filled CNT, respectively, 

in axi-symmetric (m=0) case for rigid (

0  ) and non-rigid ( 0  ) CNT. 

Figures 6(a) and 6(b) show the pressure 

amplitude fluctuations and the pressure 

amplitude associated with the viscosity 

force of the liquid inside the liquid-filled 

CNT, respectively, in asymmetric (m=1) 

case for rigid ( 0  ) and non-rigid (

0  ) CNT. 

 

 
Figure 6. (a) The pressure fluctuations and (b) the pressure associated with the viscosity 

force of the liquid versus frequency inside the liquid-filled rigid and non-rigid CNT in m=1. 
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   Figures 5 and 6 show that the non-

rigidity has an important effect on the real 

part and the imaginary part of the pressure 

inside the viscous-liquid-filled CNT. As 

mentioned before, the relaxation time 

effect of the liquid and the non-rigidity of 

the CNT wall have not been dealt with by 

other researchers in vibrational analysis of 

the CNTs [25, 26, 29-32, 36-41] due to its 

complexity. Figures 5 and 6 show that the 

assumption of 1   and the rigidity of 

the wall of the CNT would cause errors in 

the prediction of the pressure fluctuations 

and the pressure associated with the 

viscosity force of the liquid inside the 

liquid-filled CNT for both axi-symmetric 

and asymmetric vibrational analyses. If the 

non-rigidity (  ) has been assumed the real 

number, both the real and the imaginary 

parts of the pressure inside the CNT 

decrease by increasing  . If   has been 

assumed the complex number, both the 

real and the imaginary parts of the pressure 

inside the CNT decrease by increasing  . 

The results show that neglecting the non-

rigidity of CNT would cause a decrease on 

the pressure fluctuations and the pressure 

associated with the viscosity force of the 

liquid in the liquid-filled CNT, at both axi-

symmetric, and asymmetric cases. 

The energy dissipation and the non-rigidity 

of the liquid-filled CNT have not been 

mentioned by the other researchers 

whereas their effects are essential on the 

liquid load that is exerted on the wall of 

liquid-filled CNT. Hence, the liquid load 

term that is used in a set of coupled 

dynamic equations of the CNT is not exact 

and would cause errors in the analysis of 

the sound wave propagation of the liquid-

filled CNT. 

 

3. CONCLUSION  

In this paper, numerical results 

obtained and explained from an exact 

formula as obtained by the author of 

this paper and presented in Ref. [28] for 

sound pressure load term due to the 

existence of viscous liquid inside the 

finite-length non-rigid carbon nanotubes 

(CNTs), which is coupled with the 

dynamic equations of motion for the 

CNT. Significant points of this study 

include: 

 The results show that the real part of the 

non-dimensional wave number of the 

modified Helmholtz equation decreases 

by increasing  . 

 The imaginary part of the non-

dimensional wave number of the 

modified Helmholtz equation is 

sensitive to   and initially increases 

by increasing   and then, decreases 

by increasing  . 

 The results show that the assumption of 

1   would cause an error in both 

the real part of the complex wave 

number in the high frequency 

vibrational analysis of the liquid-filled 

CNT. 

 The non-dimensional phase velocity 

increases by increasing the frequency. 

 The liquid in the CNT is a dispersive 

medium for sound wave propagation, 

because the phase velocity of the wave 

is a function of frequency. 

 The value of the pressure fluctuations 

and the pressure associated with the 

viscosity force, by considering the 

viscosity, would increase in both rigid 

and non-rigid liquid-filled CNT in both 

axi-symmetric and symmetric 

vibrational analyses. 

By considering the relaxation time, the 

non-rigidity causes a decrease of both the 

pressure fluctuations, and the pressure 

associated with the viscosity force in the 

liquid-filled CNT.  
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