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Abstract 
   Shell-type nanostructures have recently attracted a lot of attention due to their several applications. 

The surface stress effect plays an important role in the mechanical behavior of such structures because 

of their large surface-to-volume ratio. In this paper, an analytical approach is presented for analyzing 

the geometrically nonlinear free vibrations of cylindrical nanoshells. In order to capture the surface 

stress influence, the Gurtin-Murdoch continuum model is applied. First, the equations governing the 

nonlinear vibrations of the shell considering the surface stress effect are derived using an energy-based 

method. In the next step, a perturbation technique is utilized to obtain the frequency-amplitude curves of 

nanoshells. Various numerical results are given to investigate the vibrational behavior of nanoshells with 

different geometrical and surface material properties. It is shown that the surface stress significantly 

affects the nonlinear free vibration behavior of the nanoshells when they are very thin. Also, it is 

revealed that the effect of geometrical nonlinearity is more prominent when the surface residual stress is 

negative.  

Keywords: Gurtin-Murdoch elasticity theory, Nanoshell, Large amplitude vibration, Surface stress, 

Analytical approach. 

 

1. INRODUCTION 

   Research on nanostructures including 

nanobeams, nanoplates, nanowires and 

nanotubes has attracted a lot of interest 

from the researchers of different fields 

during the past two decades [1-4]. Among 

them, nanoshells have become the focus of 

scientific attention in recent years owing to 

their interesting applications. Nanoscale 

shells can be used as sensors [5, 6], MRI 

contrast agents [7, 8], nanoneedles for 

intracellular injections [9], clinical 

applications [10], nanoreactors [11] and 

nanoinjectors for ink-jet printers [12].   

   Studying the mechanical characteristics 

of nanostructures is the topic of many 

research works in the literature. Accurate 

predicting the mechanical response of 

nanostructures is of great importance in 

some applications such as in nano-electro-

mechanical systems (NEMS). A literature 

review reveals that a large number of the 

theoretical investigations performed in this 

field are based on the continuum models. 

The wide applicability of continuum 

models is mainly due to their 

computational efficiency when they are 

compared with their atomistic 

counterparts. It should be noted that the 

classical continuum models are not 

suitable for the analyses of nanostructures 

since they are scale-free. It has been 

generally accepted that the mechanical 

behaviors of micro- and nanostructures are 

size-dependent. Hence, some modified 

continuum models including intrinsic 

length scales have been developed so far.  

   The nonlocal model developed by 

Eringen [13, 14] is a modified continuum 

model which can capture the size-

dependent behavior of nanostructures. In 

this model, it is considered that the stress 

at a point is a function of strains at all 
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points in the continuum. There are 

different uses of such model in the bending 

[15-17], buckling [18-22] and vibration 

[23-29] analyses of nanostructures. For 

example, Yan et al. [15] presented closed-

from solutions for the bending of 

nanobeams and nanoplates based upon 

Eringen’s nonlocal mode. Ansari and 

Rouhi [19] developed a nonlocal Flügge 

shell model for the buckling analysis of 

multi-walled carbon nanotubes under the 

action of thermal loads. Pradhan and 

Kumar [28] studied the vibrations of 

orthotropic graphene sheets embedded in 

Pasternak elastic medium within the 

framework of nonlocal elasticity theory. 

Gurses et al. [29] addressed the vibration 

problem of annular sector nanoplates based 

on the nonlocal elasticity theory by eight-

node discrete singular convolution 

transformation. Also, it has been indicated 

that the accuracy of the results of 

Eringen’s model is comparable to that of 

molecular dynamics (MD) simulations 

provided that the nonlocal parameter is 

suitably calibrated [30-35].    

   The Gurtin-Murdoch model [36, 37] is 

another size-dependent continuum model 

with wide applications in the problems of 

nanostructures. This model is originally 

developed for capturing the surface stress 

effect on the behavior of structures. The 

surface stress effect can be explained by 

the fact that atoms at or near a free surface 

of a solid body have different equilibrium 

requirements as compared to those within 

the bulk of material due to dissimilar 

environmental conditions. Because the 

energies of surface atoms are different 

from those of bulk atoms, creation of a 

surface leads to an excess free energy that 

is called as the surface free energy. The 

surface stress is also defined based on the 

variation of surface free energy with the 

surface strain [38]. Since nanostructures 

have high surface-to-volume ratios, the 

surface stress can significantly affect their 

mechanical behavior. Based on the Gurtin-

Murdoch model, the surface stress is 

formulated as a function of the 

deformation gradient, and the surface is 

modeled as a mathematical layer with zero 

thickness perfectly bonded to the bulk 

phase without slipping.  

   Up to now, many researchers have 

applied the Gurtin-Murdoch model to the 

problems of nanobeams [39-44], 

nanowires [45-47], nanoplates [48-53]. 

However, research into the mechanical 

behaviors of nanoshells using the Gurtin-

Murdoch model is limited [54, 55]. 

Recently, Rouhi et al. [55] developed a 

size-dependent shell model based upon the 

Gurtin-Murdoch model to study the linear 

free vibrations of cylindrical nanoshells 

with the consideration of surface effects.  

   Understanding the vibration behavior of 

nanostructures is of great importance for 

many devices like oscillators, clocks and 

sensors; and in some applications, 

nanostructures show the large-amplitude 

vibration behavior. For example, because 

of various sources of nonlinearities such as 

mid-plane stretching effects, nonlinear 

behaviors including softening- or 

hardening-type frequency responses are 

observed in NEMS resonators. The 

effective design of such nonlinear systems 

necessitates analyzing their nonlinear 

dynamics properly. In this regard, 

analytical solution approaches are efficient 

tools to accomplish this aim. 

   Motivated by these considerations and 

considering the fact that the surface stress 

can significantly affect the behavior of 

nanoshells, the large amplitude vibrations 

of cylindrical nanoshells are investigated 

in the present article in the context of 

Gurtin-Murdoch surface elasticity theory 

by an analytical method. To this end, using 

the classical shell theory in conjunction 

with the Gurtin-Murdoch model, a size-

dependent shell model is developed. The 

geometrical nonlinearity is incorporated 

into the shell formulation based on the von 

Kármán’s hypothesis. The governing 

equations including the surface stress 

effect are obtained by Hamilton’s principle 

which are then solved via the multiple 

scale method analytically. In the numerical 
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results section, the effects of geometrical 

parameters and surface properties on the 

nonlinear vibrations of nanoshell are 

studied. A comparison is also made 

between the predictions of Gurtin-

Murdoch model and its classical 

counterpart.   

 

2. PROBLEM FORMULATION 

   Figure 1 shows a circular cylindrical 

nanoshell with length  , thickness  , and 

mid-surface radius  . It is considered that 

the nanoshell has a bulk part and two 

additional thin surface layers (inner and 

outer layers). By selecting a coordinate 

system whose origin is located on the 

middle surface of the nanoshell, 

coordinates of a typical point in the axial, 

circumferential and radial directions are 

denoted by  ,   and  , respectively.  

 

Figure 1. Schematic view of a circular 

cylindrical nanoshell with bulk and surface 

phases. 

   The displacement field can be expressed 

as [56] 
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where  ,   and   are the middle surface 

displacements. Also,   denotes time. Based 

on von Kármán’s hypothesis, the kinematic 

relations are given as [57] 
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The constitutive relations of bulk part 

are formulated as 

 

 
 
 

 
 
   
   
   
   
    

 
 

 
 

  
      
      
   

  

   
   
   

  

 

 

(3) 

where            , 

             are classical Lamé’s 

parameters (  and   are Young’s modulus 

and Poisson’s ratio of bulk part, 

respectively). 

   Using the Gurtin-Murdoch model, the 

constitutive relations of bulk part are also 

formulated as [36] 

   
                      

                              
  

   
        

                        

 

(4) 

in which    and    are surface Lamé’s 

parameters.   ,    and    are respectively 

the surface elasticity modulus, Poisson’s 

ratio and density of surface layers. 

Moreover,    stands for the surface 

residual stress. 

   Using Eqs. (2) and (4), the surface stress 

components in terms of the displacement 

components are obtained as 
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(5) 

In the classic continuum models, it is 

assumed that      . This is because the 

stress component     is small in 

comparison with other normal stresses. 

But, this assumption does not satisfy the 

surface conditions of the Gurtin-Murdoch 

continuum model. To tackle this problem, 

it is supposed that the stress component 

    varies linearly through the thickness 

and satisfies the balance conditions on the 

surfaces [58]. According to this 

assumption,     can be obtained as 

    

 
 
    

  

  
 

    
  

  
    

   

   
   

    
  

  
 

    
  

  
    

   

   
 

 

 
 
    

  

  
 

    
  

  
    

   

   
   

    
  

  
 

    
  

  
    

   

   
 

 
  

 

(6)        

Using Eq. (5),     can be written as 

follows 
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Now, the relations of normal stresses 

          for the bulk of the nanoshell are 

formulated as 
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The total strain energy is given by 

   
 

 
          

 

 
 

 
 

 

  
 

 

 

          
 

 
     

      
 

 

  
     

      
 

 

  
  

      
 

 
         

         
         

         

 

 

                    
 
  

  

   
 
  

  
    

(9) 

in which   denotes the area occupied by 

the middle plane of the nanoshell. The in-

plane force resultants, bending moments 

and shear forces are written as 

            
      

   

            
    

     
    

     
  

  
 
 

     

            
      

   

           
    

     
    

     
  

 
  

  

  
 
 

      

         
 

 
    

      
      

      
    

            
    

  

         
 

 
    

      
    

              
        

     

               
  

   

   
 
   

   
     

 
   

   
 

         
 

 
    

      
    

              
        

        
  

   

   
 
   

   
  

                 
 
   

   
 

         
 

 
    

      
      

      
    

              
     

  
     

      
      

  

  
 

  
     

      
      

  

  
 

(10) 

in which 
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(11b) 

The kinetic energy is 

   
 

 
    

   
  

  
 
 

  
  

  
 
 

  
  

  
 
 

    
 

 

 

 

(12) 

where   
        . 

Hamilton’s principle states that 
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By taking the variations of  ,   and  , 

integrating by parts, and by putting 

coefficients of   ,    and    equal to 

zero, the size-dependent governing 

equations of the nanoshell including the 

surface stress effect are derived as  

     
  

 
     

  
   

 
   

   
 

     

  
 
     

  
   

 
   

   
 

      
   

  
      

    
 
      

   
 
    

 
 

 
   

 

  
 
   

 

  
 

 

  
     

  

  
  

 
 

  
     

  

  
  

 

  
     

  

  
  

 
 

  
     

  

  
    

 
   

   
 

 

 

 

 

 

(14) 

The corresponding boundary conditions 

are also derived as 
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By introducing Eqs. (10) into (14), the 

governing equations are rewritten in terms 

of displacement components as follows 

   
  

   

   
 
  

  

   

   
  

     
     

   
  

    
 
  

  

  

    
  

 
   
 

 

  

  
    

  
   

   
 
  

  

   

   
  

    
  

  

   

   
   

 
   

   
 

   
  

   

   
 
 

 

  

  
 
  

  

   

   
  

     
     

   
  

    
 
  

  

  

    
  

    
  

   

   
 
  

  

   

   
  

     
  

  

   

   
 
 

 

  

  
    

 
   

   
 

    
  

   

   
 
   

   
  

    
  

   

   
  

   

      
 
   

   
  

       
     

  
   

      
 

    
  

   

      
 

   

      
  

     
   

   
 
   

   
  

 
 

 
    

  
  

  
 
 

 
 
 

 
 
  

  
 
 

 

    
  

  

  
 
 

 
 
  

  
 
 

 

    
  

 
  

  

  
 
 

      

 
 

  
     

  

  
  

 

  
     

  

  
 

 
 

  
     

  

  
  

 

  
     

  

  
 

   
 
   

   
 

(16) 

3. ANALYTICAL SOLUTION 

   The simply-supported boundary 

conditions are given by 
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                       (17) 

The displacement components can be 

approximated as 
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                           should 

be properly selected such that exactly 

satisfy boundary conditions of Eq. (17). To 

this end, one can write 
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in which 
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Eq. (19) is substituted into (16), and 

then the Galerkin method is used to arrive 

at  
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(22) 

The effect of transverse inertia term is 

dominant. Hence, all the inertia terms 

related to     and     in Eqs. (21a) and 

(21b) can be neglected with an adequate 

accuracy. After such approximation, the 

resulting equations with respect to     

and     are solved and then the results are 

inserted into Eq. (21c). Accordingly, the 

following governing differential equation 

of transverse motion is achieved  

                      
       (23) 

where 

                                  

                                        

        

(24) 

Note that 

         (25) 

By considering the linear parts of Eq. 

(21), the natural frequencies of the 

nanoshell are computed by solving the 

following determinant 

 

               
               
               

    

(26) 

Three frequencies in the axial, 

circumferential and radial directions are 

obtained by solving this equation. The 

smallest frequency is considered. The 

initial conditions is 

           
  

  
       

(27) 



International Journal of Nanoscience and Nanotechnology                    247 

The multiple scales method is employed 

in order to solve Eq. (23) [59]. To this end, 

the following dimensionless parameters are 

defined first  

                   (28) 

Thus, one can write 
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So as to set the dimensionless initial 

condition and the dimensionless main 

natural frequency equal to unity, the 

following relations are given 
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where    
  

  
    
 . The scaled times    

are defined as 
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The chain rule is used as 
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in which 
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Using the perturbation technique, the 

response    can be expanded with respect 

to   as 

                           
                                       

(35) 

Substitution of Eqs. (33) and (35) into 

(31a) and equating the coefficients of same 

powers of   to zero result in 
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(36c) 

The solution of Eq. (36a) is 

                             (37) 

Then  
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By eliminating the terms that produce 

secular terms in    , 
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Eq. (36c) is rewritten as 

      
                

      

            
              

(40) 

Equating the secular term to zero leads 

to 

         
      (41) 

Eq. (41) is a complex differential 

equation. For its solution,       can be 

expressed in polar form as 

      
 

 
       

        
(42) 

where   and   are real functions of   . 

By substituting Eq. (42) into (41) and 

separating the real and imaginary parts, the 

following differential equations governing 

  and   are obtained 
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From Eq. (43b) one has 
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(44) 

Now, Eq. (42) can be written as 
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Substituting Eq. (45) into (40) leads to 

                      (46) 

The frequency of the system is obtained 

as 
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By applying the initial conditions from 

Eq. (31b) one has 
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As a result  
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4. RESULTS AND DISCUSSION 

To generate numerical results, the 

following material properties are 

considered for the bulk and surface parts 

[60, 61]: 

                              

                            

                                

First, in Table 1, a comparison is made 

between the results obtained from the 

present shell model and those reported in 

[62] based on a Timoshenko beam model. 

This table shows the dimensionless 

frequencies for various length-to-radius 

ratios. It is observed that there is a good 

agreement between two sets of results.  

In the following figures, the frequency 

ratio of the nanoshell is plotted versus its 

dimensionless vibration amplitude. These 

parameters are defined as 

Frequency ratio =        (50a) 
Dimensionless amplitude =        (50b) 

Table 1. Comparison between the present 

results and those of [62] (  
          ). 

    Present [62] 

45 0.2362 0.2341 

90 0.2206 0.2204 

135 0.2137 0.2126 

200 0.2080 0.2076 

where     and    are the nonlinear and 

linear frequencies, respectively. Also, 

     denotes the maximum amplitude of 

vibration.  

 
Figure 2. Comparison between the results 

of the Gurtin-Murdoch model and those of 

its classical counterpart (         
    ). 

Figure 2 provides a comparison 

between the predictions of the Gurtin-

Murdoch model and the prediction of the 

classical elasticity theory about the 

nonlinear free vibration behavior of the 

nanoshell. As shown, the Gurtin-Murdoch 

model is size-dependent, and different 

curves are obtained for various values of 

thickness. It is seen that there is a large 

difference between the results of two 

models as the nanoshell becomes very thin. 

This difference has its maximum value 

when the dimensionless amplitude is equal 

to unity. Figure 2 depicts that at a given 

dimensionless amplitude, the frequency 

ratio decreases as thickness of nanoshell 

decreases. It is also observed that the 

difference between the classical and non-

classical results almost disappears as the 
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nanoshell becomes sufficiently thick. It 

means that the surface stress has an 

important influence on the nonlinear free 

vibration behavior of nanoshell with small 

thicknesses, but this influence can be 

neglected when the surface energy is 

negligible as compared to the energy of 

bulk of material. Moreover, the effect of 

geometrical nonlinearity can be seen in 

Fig. 2. The results show that the influence 

of geometrical nonlinearity becomes more 

prominent as the dimensionless amplitude 

increases. It is also seen that the nonlinear 

effect is weakened when the surface effects 

are taken into account. 

  

Table 2. Comparison between the linear 

and nonlinear frequencies (GHz) of the 

nanoshell with considering surface effects 

for different values of thickness (    
                  ). 

      Nonlinear Linear Percentage 

difference 

1  8.8601 8.8360 0.27 

5 1.2387 1.2088 2.47 

10 0.5277 0.5095 3.57 

50 0.0892 0.0809 10.26 

100 0.0429 0.0385 11.43 

 

Furthermore, Table 2 provides a 

comparison between the nonlinear and 

linear frequencies of the nanoshell 

obtained based on the surface elasticity 

theory. This table indicates that the 

frequency of nanoshell increases when the 

geometrical nonlinearity is taken into 

account. However, the difference between 

the predictions of linear and nonlinear 

models can be neglected at small values of 

thickness for which the surface energies 

are dominant.  

In Figure 3, the effect of surface 

residual stress on the nonlinear free 

vibration response of the nanoshell can be 

studied. Three values (positive, negative 

and zero) are considered for this 

parameter.  

 

 
Figure 3. Nonlinear free vibration 

behavior of the nanoshell for different 

values of surface residual stress (  
                 ). 

The figure clearly shows that the 

vibration behavior of the nanoshell is 

dependent on the sign of surface residual 

stress. One can see that at a given 

dimensionless amplitude, the frequency 

ratio associated with             is 

greater than that associated with    
        . It can be explained by the fact 

that the negative values of surface residual 

stress decreases the linear stiffness of the 

nanoshell, whereas the positive values 

have an increasing effect. 

 
Figure 4. Nonlinear free vibration 

behavior of the nanoshell for different 

values of length-to-radius ratio (  
            ). 
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Figure 4 indicates the nonlinear free 

vibration behavior of the nanoshell for 

different length-to-radius ratios ranging 

from 0.5 to 3. It is observed that the 

hardening-type behavior of the nanoshell is 

weakened as the length-to-radius ratio 

increases. This can be explained by the 

role of surface energies which are more 

prominent at large length-to-radius ratios. 

It should be noted that at a constant value 

of thickness, the surface energies increase 

with the increase of length-to-thickness 

ratio.  

 

5. CONCLUSION 

   The Gurtin-Murdoch model was utilized 

in this paper in order to investigate the 

nonlinear free vibration characteristics of 

cylindrical nanoshells with the 

consideration of surface stress effect. The 

governing equations were derived using 

the classical shell theory together with 

Hamilton’s principle. The Galerkin and 

multiple scales methods were also used to 

analytically solve the nonlinear free 

vibration problem. Selected numerical 

results were presented to study the surface 

effects on the behavior of the nanoshell. It 

was concluded that the surface stress 

significantly affects the vibrational 

behavior of the nanoshell when it is very 

thin. The results showed that, due to the 

surface stress effect, the nonlinear 

hardening-type response of the nanoshell is 

weakened as the thickness decreases. It 

was also observed that the difference 

between the predictions of the Gurtin-

Murdoch model and its classical 

counterpart can be neglected for 

sufficiently thick nanoshells. Another 

finding was that the nanoshell has different 

responses for positive and negative values 

of surface residual stress. It was shown that 

the effect of nonlinearity is more 

prominent when the surface residual stress 

is negative. The reason is that the 

compressive in-plane forces are generated 

in the nanoshell when surface residual 

stresses is negative. 
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