
163

Ab Initio Study of Chirality Effects Onphonon Spectra, 
Mechanical and Thermal Properties of Nearly 
Samediameter Single Wall Carbon Nanotubes

H. Tashakori1, B. Khoshnevisan1,2, F. Kanjouri3*, Z. S. Naghavi2

1- Physics Department, Computational Physics Lab, Qom Branch, Islamic Azad University, 
Qom, I.R. Iran

2- Faculty of Physics, University of Kashan, Kashan, I. R. Iran
3- Faculty of Physics, ‎Kharazmi University‎, ‎Tehran‎, ‎I. R. Iran

(*) Corresponding author: kanjouri@khu.ac.ir
(Received: 12 Jan. 2014 and accepted: 17 May 2014)

 
Abstract:
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method 
to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical 
properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show 
that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also shown that the value 
of compressive Young’s modulus for (5,5) nanotube isgreater thanthat for (9,0) nanotube while thevalue of 
tensile Young’s modulus for (9,0) nanotubeisgreater than that for(5,5) nanotube. The result of our calculations 
shows that thespecific heat capacity of (5,5) and (9,0) nanotubes coincides, therefore we may conclude that 
thespecific heat capacity of nanotubes is independent of their chirality. Furthermore we have found that the 
atoms in the armchair nanotubes are positioned as close as possible in the direction of the nanotube axis, 
therefore they could have more resistant against compressive pressure.
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1. INTRODUCTION

During the last decades, carbon nanotubes, due to 
the ability of understanding the size importance 
in physical properties and also their applications 
in nanostructure materials, have received much 
attentions [1-5].
Carbon nanotubes are carbon based structures 
which have been largely used in new technologies 
because of their specific electronic and mechanical 
properties. The physical properties of carbon 
nanotubes will change depending on the geometry. 
Varying the geometry of carbon nanotubes makes 

it possible to fabricate low dimensional physical 
systems in order to achieve higher advantages in 
technology [6-8].
Numerous studies have been performed to 
determine the mechanical properties of this 
nano-structured material [9–13]. Theoretical and 
experimental investigation indicated an average 
Young’s modulus of around 1 TPa and Poisson’s 
ratio of 0.25–0.28 for single-walled carbon 
nanotubes (SWNTs), depending on the CNTs’ 
length, diameter, chirality, sample synthesis, type of 
defect, measurement techniques, and computational 
theory and parameters.
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The vibration behavior of carbon nanotubes (CNTs) 
has been extensively investigated due to their 
importance in nano-electro-mechanical systems 
(NEMS) and nanosensor application. 
Various numerical and experimental investigations 
have been reported on the RBM vibrations of 
CNTs. S. Basirjafari et al have analytically studied 
the radial breathing modes of multi-walled carbon 
nanotubes [14]. A theoretical analysis of the radial 
breathing mode (RBM) of carbon nanotubes (CNTs) 
subjected to axial pressure has been presented based 
on an elastic continuum model by Xiao-Wen Lei et 
al [15]. They have investigated the effects of axial 
pressure, wave numbers and nanotube diameter on 
the RBM frequency.
Carbon nanotubes have the highest tensile strength 
among the known materials therefore they may be 
considered as the strangest material ever known. 
There are covalent bonds between carbon atoms. 
A tensile strength of 63Gpa was found for multi-
walled carbon nanotube in 2000 [16] (about a 
thousand times tires).
The high thermal conductivity in the direction of the 
nanotube axis, which is one of the most important 
properties of carbon nanotubes is in the focus 
of many researches. Carbon nanotubes will also 
become insulators in the directions perpendicular to 
the nanotube axis.
The specific heat capacity of carbon nanotubes is 
an important quantity in industrial applications 
and also experimental research. The specific heat 
capacity can be determined based on statistical 
mechanics calculations. 
Coefficient of thermal expansion of carbon single-
walled nanotubes has been investigated analytically 
and numerically by Askari et al [17]. They have 
shown that the coefficient of thermal expansion of 
carbon single-walled nanotubes is independent of 
their chirality.
In this paper we have theoretically studied 
mechanical and thermal properties of infinite single 
wall (5,5) and (9,0) nanotubes. We have calculated 
the phonon dispersion, phonon density of states 
and specific heat capacity of these nanotubes. Our 
calculations indicate that the Youngs’s modulus 
of CNTs is different in tension and compression. 
Also the results of our calculations show that the 

specific heat capacity of CNTs is independent of 
their chirality.

2. CALCULATION  METHODS

 As is well known in harmonic approximation a solid 
consists of a periodic array of atoms or ions that will 
oscillate around their equilibrium positions. The 
energy needed for dynamical motion is provided 
by the solid temperature. By calculating the total 
energy of solid at zero temperature, we may obtain 
structural properties of carbon nanotubes such as 
lattice equilibrium constants and bulk modulus. 
The vibrational energy of atoms or ions in a 
dynamical crystal at non-zero temperature will have 
significant effects on the mechanical and thermal 
properties of crystal such as heat capacity and 
thermal expansion. 
In this paper Quantum ESPRESSO package has 
been employed for the DFPT calculations while 
the DFT part of the calculations were done under 
local density approximation (LDA) [18]. The effect 
of the internal electrons on valence electronic states 
is taken into account by using ultra soft pseudo-
potentials [19]. 
The chosen super-cell was a hexagonal with 14 Å 
sides so any coupling between neighbor SWCNTs 
has been eliminated. In addition, the BZ integration 
was carried out via the Monkhorst– Pack scheme 
[20, 21] with 1×1×12 k-points. The convergence 
test with 0.1 μeV tolerance has been done for total 
energy according to the plane wave’s cut off energy 
up to 544 eV. Moreover, optimization of the ionic 
positions, lattice parameters and cell volume were 
achieved after the relaxation when all forces and 
stresses became less than 0.25meV/Å and 0.05GPa 
respectively.

3. PHONON  PROPERTIES

Figures 1-2 show the phonon dispersions along 
the tube’s axis (z direction) and their DOSs for 
an armchair (5,5) and an zigzag (9,0) SWCNTs.
Considering the lowest energy( acoustic )dispersion 
curves ,it is deduced that near the Г( k=0) point the 
transverse-acoustic (TA) mode branches are doubly 
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degenerated and the second branches are belong to 
the longitudinal-acoustic (LA) mode.

Figure 1: (a) The calculated phonon 
dispersion relations of an armchair carbon 
nanotube (5,5) plotted in axial q-vector. (b) 
Phonon density of states of (5,5) nanotube.

Figure 2: (a) The calculated phonon dispersion 
relations of an zigzag carbon nanotube (9,0) 

plotted in axial q-vector. (b) Phonon density of 
states of (9,0) nanotube.

Moreover, there is a fourth acoustic mode for 
CNTs, twisting mode (TW), which shows an 
ionic rotational wave propagation along the tubes 
[22] and the lowest third branch shows this mode, 
respectively. Slopes of the acoustic branches around 
the Г point (dω /dk)k=0 give their relevant sound 
velocities. The sound velocities of the TA and LA 
phonons for (5,5) carbon nanotube are estimated as 
VTA=5.51 km/s and VLA=15.127 km/s, respectively. 

In addition, the velocity of the twisting acoustic 
wave is VTW=14.925 km/s for (5,5) nanotube. The 
sound velocities of the TA and LA phonons for (9,0) 
carbon nanotube are estimated as VTA=10.0649 km/s 
and VLA=22.7716 km/s, respectively. The velocity of 
the twisting acoustic wave is VTW=15.428 km/s for 
(9,0) nanotube. The acoustic velocities are reported 
in Table 1.

Table 1: The calculated acoustic velocities of 
(5,5) and (9,0) carbon nanotubes.
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The other vibrational characteristic feature of the 
SWCNTs is their radial breathing mode (RBM) 
frequencies (the most important low-frequency 
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Raman active mode). It involves a collective 
movement of atoms towards and away from the 
central axis and its value is different for each tube. 
The RBM frequency dependence on diameter of 
SWCNTs is commonly accepted via an empirical 
formula [23]:					   
D is the diameter of the nanotube (Å).
Radial breathing modes calculated and radial 
breathing modes obtained from the empirical 
equation (2) are compared in table 3.

4. MECHANICAL PROPERTIES

The main mechanical characteristics of the 
SWCNTs are Young modulus, Y, and Poisson ratio. 
The Y value direction is defined as: 
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Where e is the inserted strain, 0L  is the 
equilibrium length, 0A  is the cross-section and κ 
is the equivalent elastic constant for longitudinal 

expansion or contraction of nanotube. To find 
the κ value, we plot the energy variations vs 

2( ) 2S L= ∆  where L∆  is the length variation 
of tubes. The κ value can be calculated via the 
relation: E Sκ∆ =  (elastic approximation)
Figures 3 and 4 show the energy variation of 
CNT (5,5) and (9,0) versus S in tension and 
compression. As it can be seen from these figures 
the energy linearly increases by increasing S. By 
calculating the slope of the curve we can obtain 
the value of Young’s modulus of CNTs in tension 
and compression. However we can find the value 
of Young’s modulus Murnaghan method. Table. 4 
indicates the results of our calculations.

Figure 3: Energy variation versus 2( ) 2S L= ∆  for 
(5,5) SWCNT: a-tensile state, b-compressive state

The Y values in third column of table 4 have been 
obtained via the Murnaghan method; whereas, for 
determining the compressive and tensile Y values 
(fourth and fifth columns of the table) we have used 
the elastic approximation (Figures 3-4). It must 
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Table 3: The radial breathing mode (RBM) of (5,5) and (9,0) carbon nanotubes. Number of C atoms in unit 
cell (N). Radius of the nanotube (R).   
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be pointed out that there is a very good agreement 
between average values of the 4th and 5th columns 
and the values of the third column. As it is expected, 
the compressive modulus values are bigger than the 
tensile ones and the 6th column of the table shows 
their differences.  

 Figure 4: Energy variation versus 2( ) 2S L= ∆  for
(9,0) SWCNT: a-tensile state, b-compressive state

Another important mechanical property of a 
material in the linear regime is the Poisson ratio, 
which has been defined in a macroscopic context 
as the negative ratio of the relative change in radius 
over the relative elongation:
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Where, R0 and L0 are relevant unperturbed radius 
and length of the sample.
In this regard, by consideration of an isolated tube 
and finding out the slope of its radius variation 
versus its perturbing unit- cell elongation (Figure 5) 
and multiply it by (-L0/R0), it would be possible to 
calculate the Poisson ratio. The results of calculation 
for the narrow SWCNTs are shown in table 5. As 
this table shows the Poisson ratios for the zigzag 
(9,0) nanotube is higher than that for armchair (5,5) 
nanotube.
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shown in table 5. As this table shows the Poisson ratios for the zigzag (9,0) nanotube is higher 
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Table 4: Young modulus, Y, for (5,5) and (9,0) SWCNTs. The last column shows 
∆Y=Ycomperessive-Ytensile

Figure 5: Least square fitting for variation of the narrow (5,5) and 
(9,0) SWCNTs versus their unit-cell elongation  
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Table 5: The poisson is calculated for carbon 
nanotubes

 PoissonR(Å)nanotube
0.1563037353.4017(5,5)
0.2171322763.5302(9,0)

4. SPECIFIC  HEAT 

In principle, except in very low temperature region 
the phonon contribution to the specific heat, Cv(T) 
of materials is significant.  After calculating the 
phonon DOS for the narrow SWCNTs, we can find 
out the temperature dependence of their specific 
heat according to the following expression [27]: 

				    (6)

Where ν is phonon’s frequency, ( )g n  is phonon 
DOS and maxn is the highest phonon frequency 
of the material and is related to the Debye 
temperature, DQ  ( maxB D hk nQ = ).
The temperature dependence of specific heat 
for (5,5) (armchair) and (9,0) (zigzag) SWCNT 
is shown in figure 6. It is observed that specific 
heat exhibits almost the same behavior with 
temperature for both tube types.

Figure 6: Temperature dependence of specific heat 
of (5,5) and (9,0) carbon nanotube.

5. CONCLUSION

Our results for radial breathing modes (RBM) are 
in good consistent with the experimental ones. In 
equation (2), nanotubes radii are the parameters 
considered to calculate the RBM while the chirality 
dependence of these modes is ignored in this 
equation. Our theoretical results predict that the 
RBM depends on the chirality. The most important 
application of RBM is in nanotubes purification.
The Young’s modulusfor (5,5) and (9,0) nanotubes 
are greater than 1Tpa, based on our calculations.
The value of compressive Young’s modulus for 
(5,5) nanotube is greater than that for (9,0) nanotube 
while the value of tensile Young’s modulus for (9,0) 
nanotube is greater than that for (5,5) nanotube.
We have also found that the atoms in armchair 
nanotubes are positioned as close as possible in 
the direction of the nanotube axis, therefore they 
could have more resistant against compressive 
pressure. Furthermore we have shown that the 
atoms in zigzag nanotubes are positioned as far 
as possible in the direction of the nanotube axis, 
therefore they could have more resistant against 
tensile pressure.  
The value of elastic constant coefficient for (5,5) 
nanotubes in the direction of nanotube axis (C33) is 
completely different in comparison with the value 
of Young’s modulus. Due to the concentration of 
atoms in the direction of nanotube axis, the elastic 
coefficient perpendicular to nanotube axis becomes 
important while this cannot be observed in (9,0) 
nanotubes. Finally we have found that the Poisson 
ratios for the zigzag (9,0) nanotube is higher than 
that for the armchair (5,5) nanotube.
In room temperature (300 K), the specific heat 
capacity per mole is equal to 1R (universal 
constant) which is due to the assumption of quasi 
one dimensionality of nanotubes.
The outcome of our calculations shows that the 
specific heat capacity of two (5,5) nanotube and (9,0) 
nanotube coincides, therefore we may conclude that 
the specific heat capacity of nanotubes is independent 
of their chirality. This result is in agreement with 
the result of analytical and numerical calculations 
in Ref. [17]
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