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Abstract:
α-Amylase has been studied extensively from various sides. This enzyme is  used in many industries  .Many 
applications of this enzyme have encouraged us for greater attempts on the study of α-amylase and to search 
for more effective processes. In this investigation, the structure of nanotube - catalytic site of bacillus subtilis 
α- amylase was optimized by hyperchem 7.0 and then it was investigated with ab initio/hartree fock and density 
functional theory /B3LYP methods using the STO-3G, 3-21G and 6-31G basis sets for a physicochemical 
explanation of interactions within these nano biosystem. Then nuclear Magnetic Resonance (NMR) parameters 
and so charge, dipole moment, and stability energy were calculated on the optimized structure. We have found 
each of active atoms that indeed play an important role in imparting extra stability. In the current study, we 
have reported the NMR parameters of 8 atoms of catalytic site of bacillus subtilis alpha-amylasethe. Interesting 
finding of the present study is that in NMR shielding for each of active atoms, O8 and O14 had maximal shift 
in all of levels. In catalytic mechanism of this enzyme, O14 is adopting a chair structure leading to the easy 
cleavage of the glucoside bond (fixer for catalysis). This investigation suggests that nanotube interactions 
in this nano biosystems indeed play an important role in imparting extra stability of the catalytic site of the 
enzyme .Energy parameters in B3LYP level in different basis sets have more negative values than HF and have 
indicated the most stability in B3LYP6-31/G level and so dipole moment in this structure have observed that in 
HF3-21/G is maximum. The aim of this work was to discuss the aspects of the electronic structure of this nano 
biosystem to increase their advantages in practical applications.
Keywords:  Nanotube-catalytic site, Bacillus subtilis α-amylase, AB initio, DFT, NMR shielding, GIAO, CSGT, 
HF, B3LYP.  
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1. INTRODUCTION

α -Amylase (α-1, 4-glucan-4-glucanohydrolase, 
EC 3.2.1.1) catalyzes the hydrolysis of D-(1, 
4)-glycosidic linkages in polysaccharides such 
as starch, glycogen, and malto oligosaccharides, 
so that produces anomeric products [1]. This 
enzyme has been studied extensively from various 
sides, including structure, function, secretion, and 
industrial application. α-Amylases are the most 

widely studied members of the glycosyl hydrolase 
family 13 [1,2].
Microorganisms such as bacteria and fungi have 
been extensively screened for suitable α-amylase 
production. Several extracellular α -amylases are of 
prominent industrial importance [3].
This enzyme is extensively used in many industries 
including brewing, starch liquefaction, food, 
textile, paper and pharmaceuticals. These uses 
encourage us for greater attempts on increasing to 
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study α-amylases and to search for more effective 
processes [4-5].
Today NMR spectroscopy is a powerful tool in 
chemistry and bio chemistry [6-7]. In quantum 
mechanics, the quantity is directly related with the 
NMR chemical shift. The shielding is defined as the 
mixed second derivative of the energy with respect 
to magnetic moment of the nucleus and the strength 
of the applied magnetic field. It is solved through the 
second-order perturbation theory with the Zeeman 
Hamiltonian, treated as a perturbing term [8-9].
The methods currently employed for calculating of 
the NMR shielding are done by ab initio method 
consist of the Hartree Fock (HF) [10] and so density 
functional theory (B3LYP) levels. [11-13]. The 
term “AB initio” refers to calculations that are 
considered directly from theoretical principles, 
without inclusion of experimental data [14].  
Gaussian basis sets are normally employed as 
the basis functions to fit the electronic orbital 
in a molecule [15]. The NMR shielding at very 
accurate levels of approximation are available in 
literature .The widely used methods for calculating 
of chemical shifts are as follows: GIAO and CSGT 
approximations [16-19]. The GIAO approach is 
known to give satisfactory shielding for different 
nuclei with larger molecules [17-19].
This study have surveyed the active atoms which 
play in stability by examining the NMR shielding.  
Also optimum energy and dipole moment were 
evaluated. The aim of this work is to discuss the 
aspects of the electronic structure of this nano 

biosystem and to increase their advantages in 
practical applications.

1.2. Computational methods

The zigzag single-walled carbon nanotubes 
(SWCNT) with (5, 0) structure were made using 
the implement in HyperChem7.0. The nanotube 
symmetry is D5d [20, 21]. 
In this study, a structure of nanotube –catalytic 
site of bacillus subtilis α amylase was made by 
HyperChem7.0 (Figures 1, 2). The structure of 
this enzyme is deposited in Protein Data Bank as 
1UA7. At first, nanotube –catalytic site of enzyme 
was optimized. The Gaussian 98 was used for 
all calculations [22] and then Nuclear Magnetic 
Resonance (NMR) parameters by AB initio (hartree 
fock) and density Functional Theory ( B3LYP) 
methods was calculated on the optimized structure 
(Figure 2.) by GIAO and CSGT methods using the 
STO-3G ,3-21G and 6-31G basis sets .The results 
of the hartree fock and B3LYP methods of NMR 
shielding values (ppm) including isotropic (σiso ) 
and anisotropic (σaniso) effects and so charge , energy 
(kcal/mol) and dipole moment (debye) parameters 
for 8 number of active atoms of catalytic site were 
reported. 

2. RESULTS  AND  DISCUSSION

In the current study, we performed the structural 
computations on the nanostructure of the nanotube-
catalytic site system of bacillus subtilis α amylase. 
In this investigation, we analyze and report the NMR 
shielding values of 8 atoms of catalytic site at HF 
and B3LYP levels by STO-3G, 3-21G and 6-31G 
basis sets. We have studied principle calculations on 
this nanostructure.
The NMR parameters are given in Table 1 and 2. 
Also, parameters of σiso and σaniso of mentioned 
atoms versus atom number and charge is shown in 
Figure 3, 4. 
The results of Table 1 are shown in Figure 3 and 4, 
where we plot the NMR shielding isotropy (σ iso) and 
NMR shielding anisotropy (σaniso) of the nanotube-
catalytic site for each of active atoms. 
We found that O8 and O14 had maximal shift. Other 

Figure 1: The structure of nanotube –catalytic site 
of bacillus subtilis α amylase in VMD software.
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indicated atoms had the similar shifts in different 
positions therefore some atoms on nanotube-
catalytic site of bacillus subtilis alpha amylase 
indeed play an important role in imparting extra 
stability and functionality and the best interaction in 
the catalytic site of the enzyme.
 It should be noted that Calculations at the B3LYP 
and  HF  levels  in  CSGT  and  GIAO  methods  have 
shown that  shielding  properties  in6-31  G is  better 
than the other basis sets, (Figures 3a, 3b, 3c, 3d).  
In catalytic mechanism of this enzyme, one 
hydrogen-bonding is between O14 of carboxyl 
group of ASP269 and sugar in the catalytic subsite 
-1 in the enzyme/ acarbose. This atom is adopting 
a chair structure  leading  to  the  easy  cleavage  of 
the  glucoside  bond(  fixer  for  catalysis.  ]23,1[  The 
interesting  finding  of  the  present  study  is  that  O8  
and O14 have maximal shift in B3LYP levels. 
In the course of parameters deliberation and relating 
them to the fundamental electronic structure of 
the considered system, σaniso and σiso parameters 
effects provided beneficial information on the 
interaction characteristics.
The graphs of the charge value versus the isotropic 
and anisotropic parameters at B3LYP /6-31G  and 
HF /6-31G  Levels in Figure 4 shows charge Density 
is high on O8 and O14.
Also, we have detected the electromagnetic nature of 
this system by calculating the parameters consisting 
energy and dipole moment which provide valuable 
information on the interaction characteristics.
By plotting the energy values versus basis sets, it is 
observed that stability energies decrease linearly in 

basis sets consisting STO – 3 G, 3 - 21 G and 6 - 31 G 
in HF and B3LYP levels, respectively (Figure 5). Also, 
B3LYP/6-31G (5b) is better than the other level/basis 
sets (Table 2). 
The factors such as dipole moment values are very 
important quantities for determining and estimating 
polarity of component [24]. The dipole moment 
values of this system are reported in Table 2 and 
Figure 5a.
In this nano biosystem, it was observed that 
dipole moment value in HF/3-21G was maximum. 
Therefore maximum polarity was observed in this 
level. 
Enzymes are big structures that cannot directly 
be utilized by QM methods (quantum mechanics 
methods). Only the substrate and residues in the 
catalytic site are treated quantum mechanically 
and the rest of the enzyme is explained at the MM 
method (molecular mechanics methods). This 
decreased the computational dispersion and made 
it possible to investigate large enzyme structures 
[25]. The QM method is increasingly applied and 
is preferred to traditional methods due to their 
versatility and ability to describe the same system 
at different levels of detail. [14, 26, 27].The NMR 
shielding quantity has been applied to a broad range 
of researches in chemistry and biochemistry and 
has revealed to be in valuable investigations. It has 
played a significant role in the structural studying 
of protein [28-30].  AB initio calculation of NMR 
shielding has become an indispensable tool in 
the analysis of molecular structure and accurate 
assignment of NMR spectra of systems [7]. 

(a)                                                                    (b)
Figure 2:  The geometrical structure of the optimized structure atoms
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Figure 3: The curves of  nanotube- catalytic site atoms via atom number versus σiso and σaniso at 
HF and B3LYP levels.

(a)

(b)

(c)

(d)
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The studying of nanometer sized structures will lead 
to products which are multi-functional.
Therefore, the studying of qualities of structures at 
the nano scale with the assistance of computational 
calculations is important to plan the specific material 
properties [7, 31, 32].

3. CONCLUSION

1.	 In the current study, we analyzed the NMR 
parameters of 8 atoms of catalytic site of 
bacillus subtitles alpha-amylase at HF and 
B3LYP levels with STO-3G, 3-21G and 6-31G 
basis sets. The results of NMR shielding for 
each of active atoms, showed that O8 and O14 
had maximal shift. This investigation suggests 
that some interactions on this nano biosystems 
indeed play an important role in imparting extra 
stability and functionality of enzyme. 

2.	 In catalytic mechanism of this enzyme, O14 
of carboxyl group of ASP269 is adopting the 
chair structure that leading to easy cleavage 
of the glycoside bond (During hydrolysis), the 
results of this study indicated that O8 and O14 
had maximum shift in B3LYP levels and played 
an important role in extra stability and the best 
interactions. 

3.	 The charge value versus the isotropic and 
anisotropic values showed that charge Density 
was on O8 and O14.

4.	 The stability energy was reported and shown 
the most stability in B3LYP/6-31G level.

5.	 The dipole moment was observed that HF/3-
21G was maximum.

3.1. Future objectives

1.	 A number of α-amylase structures are available 
therefore we can study the interesting results of 
this study on these structures. These structures 
including pig pancreatic amylase I [33,34], 
pig pancreatic amylase II [35,36], Aspergillus 
oryzae α-Amylases [37], barley α-amylase 
[38], Bacillus circulans cyclodextrin glycosyl 
transferase [39-41], Pseudoalteromonas 
haloplanctis  α-amylase [42], and Bacillus stearo 
thermophilus “maltogenic” α-amylase [21]. 
In the overall fold of these structures, despite 
differences in their amino acid sequences, 
they have similar three dimensional structures, 
suggesting a similar catalytic mechanism. 
Therefore we can suggest the interesting results 
of this study on these structures. We suggest 
some of atoms that are similarly at nanotube-
catalytic site of these alpha amylases and that 

Figure 4: Graphs of the charge value versus the isotropic and anisotropic parameters at (a) B3LYP /6-31G  
and (b) HF /6-31G  Levels.
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play an important role in extra stability. 

2.	 These theoretical calculations have become a 
competitive alternative to successful assumptions 
and interpretation for nano-biochemical 
investigations.
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