
23International Journal of Nanoscience and Nanotechnology

Investigation of the Activity of Nano Structure Mn/γ-Al2O3 
Catalyst for Combustion of 2-Propanol 

D. Salari, A. Niaei*, S. A. Hosseini, R. Aleshzadeh, H. Afshary 

Department of Chemical Engineering and Applied Chemistry, Faculty of Chemistry, 
University of Tabriz, Tabriz, I. R. Iran

(*) Corresponding author: niaei@yahoo.com
(Received: 01 Sept. 2009 and Accepted: 14 Apr. 2010)

 
Abstract:
This paper reports results of a study regarding the activities of nano structure Mn/γ-Al2O3 and γ-Al2O3 
catalysts for oxidation of 2-propanol (as a model of volatile organic compound). Nanostructure of catalysts 
was revealed using XRD, SEM and TEM techniques. Catalytic studies were carried out in U-shaped packed 
bed reactor under atmospheric pressure and at the reaction temperature of 150- 500°C. Results showed that 
the introducing of manganese onto γ-Al2O3 improves the activity of Mn/γ-Al2O3 compared to pure γ-Al2O3 
for oxidation of 2-propanol. This study confirms that nanostructure Mn/γ-Al2O3 catalysts can be suitable for 
oxidation of organic compounds. This study, hopefully, holds the promise for the eliminating of 2-propanol 
contained hazardous materials in industrial application.
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1. INTRODUCTION

Air pollution has become one of the most complex 
environmental problems. Among the most common 
sources produced by volatile organic compounds 
(VOCs), 2-propanol is one of the main pollutants 
whose principal sources are cleaning fluids and 
vehicles (2-propanol is a major ingredient in “dry-
gas” fuel additives). It is about twice as toxic 
as ethanol and its metabolite, acetone, is a CNS 
depressant in its own right. It was the fifth on the 
list of 12 most commonly poisoning drugs in a 
study undertaken in the USA [1].

The oxidation of the VOCs to CO2 and H2O is a 
promising method for removing these pollutants 
from environment. The oxidation on catalysts 
takes place at temperatures, which are lower 
than those required for thermal destruction 
which is an important factor for improving the 

economy of the process [2]. In the catalytic 
incineration, VOCs react with oxygen (usually 
the most VOC emissions are diluted in air) in 
presence of a catalyst, yielding H2O and CO2 
without the formation of by-products and in 
such processes, partial oxidation reactions must 
be avoided. According to more strict restriction 
for the emissions of some oxidized compounds, 
the presence of even small amounts of species 
like aldehydes, can make the mixture resulting 
from catalytic combustion processes even more 
pollutant than the waste to be purified [3].

There are two types of catalysts that can be used in 
catalytic oxidation, i.e. metal oxides and supported 
noble metals [4-7]. It is generally accepted that 
noble metals are more active than metal oxides 
but the latter are more resistant to poisoning [8]. 
Pt and Pd are the most common noble metals used 
for total oxidation of VOCs [9] but their high costs 
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and limited availability have been encouraging their 
replacement by other active compounds such as 
metal oxide/Al2O3 catalysts.

  Nano structure catalysts are of topical interest 
because of their intriguing properties different from 
those of their corresponding bulk catalysts. Due 
to their unique properties, they were employed 
in various catalytic applications. There are many 
reports in the literature on the synthesis of transition 
metal nanoparticles and their applications as 
catalysts [10-13].

Alumina has enormous technological and 
industrial applications. It exists in a variety of 
metastable structures including γ, η, δ, θ, κ and 
χ-alumina, as well as its stable α-alumina phase 
[14]. Among these transitions, γ-alumina is one 
kind of extremely important nano sized materials. 
It has been used as a catalyst and catalyst 
substrate in automotive and petroleum industries, 
structural composites for spacecraft, and abrasive 
and thermal wear coatings [15]. Recently Al2O3 
in pure and support forms has been widely used 
for eliminating many organic pollutants [16-18]. 
Complete oxidation of BTX (benzene, toluene, 
xylene) over some metal oxides (Cu, Mn; Fe, 
V, Mo, Co, Ni, Zn) supported on γ-Al2O3 and 
other supports was reported by Kim et al. [19]. 
Results of their study showed that γ-Al2O3 was 
most promising support from the view point of 
activity.

The metal oxide particles are the key compounds 
of the catalyst. They are responsible for the activity 
and selectivity of the catalyst. The activity of the 
catalyst will generally depend on the size of the 
metal oxide particles, where a catalyst with small 
particles will give high activity due to the large 
number of atoms available on the particles surfaces 
[20]. 

In the present work we studied the activity of γ-Al2O3 
and Mn/γ-Al2O3 catalysts (both in nano size) for 
deep oxidation of Isopropyl alcohol. The aim of 
this work was to determine the effect of γ-Al2O3 
particle size and the presence of metal oxide (Mn 
oxide) on the activity of catalyst in the oxidation of 
2-propanol. 

2. MATERIAL AND METHODS

2.1. Materials

The commercial nanostructure γ-Al2O3 powder 
(BET=190 m2/g) was supplied by Merck industry 
and used as a catalyst without further purification 
or treatment. The precursor metal salt, Mn(NO3)2, 
also was purchased from Merck industry. All the 
other solvents and chemicals were obtained from 
commercial sources and were used without further 
purifications. 

2.2. Characterization methods

The catalytic materials were characterized by 
XRD, SEM, BET and ICP-AES methods. Powder 
X-ray diffraction (XRD) was used to identify 
the crystalline phase presence in the catalysts. A 
Siemens D500 diffractometer with Cu Kα (λ=0.154 
nm) radiation was used. The morphology study 
of catalysts was studied using scanning electron 
microscopy (SEM). The image of samples was 
recorded on EQ-C1-1 microscope. The Brunaure-
Emmet-Teller (BET) surface areas of the samples 
were determined by N2 adsorption-desorption 
using a Micrometrics (Gemini2375) surface area 
analyzer. Inductively coupled plasma atomic 
emission spectroscopy (ICP-AES) method was 
used for determining the amount of metal loaded 
on support (based on weight percent of metal in 
final catalyst). TEM measurements were carried 
out in a JEOL 2000 electron microscope operating 
at 200 kV.

2.3. Preparation of Mn/γ-Al2O3 nano particles

Wet impregnation method was used for loading 
of metal on support surface. The γ-Al2O3 particles 
was added to 0.1 M aqueous solution of Mn(NO3)2 
and stirring was carried out for 12 h at the room 
temperature. Afterward resulting emulsion was 
centrifuged and filtered using deionized water for 
several times. Mn/γ-Al2O3 catalyst was obtained after 
drying at 105°C and consequently calcinations in air 
at 450°C for 4h. The prepared Mn/ γ-Al2O3contains 
4.6 wt.% of manganese and it’s surface area was 
145.5 m2/g.
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2.4. Determination of catalyst activity

The activities of catalysts were measured in a 0.8 
cm internal diameter continuous flow tubular 
glass reactor placed in an electrical furnace. The 
schematic of experimental set up is shown in Figure 
1. Catalyst (0.2 g) was placed over a plug of glass 
wool and placed inside of U shaped reactor. The 
N2 flow is used as the carrier gas for evaporation 
of VOC (2-propanol) and the purified air used as 
the oxygen supplier flow. The feed gases were pre-
mixed in the mixing chamber and sent to the reactor. 
The reaction was operated under steady state in 
the atmospheric pressure. Gas phase products 
of reaction were trapped and analyzed by a gas 
chromatography (Shimadzu 2010). The fractional 
conversion of isopropanol (X isopropanol) in this 
study is defined as equation (1).

   (1) 

Where N initial is moles of isopropanol present 
initially and N final is moles of isopropanol present 
after the reaction completes.

3. RESULTS AND DISCUSSION

3.1. XRD characterization of catalysts

Figure 2 shows XRD patterns of γ-Al2O3 and Mn/γ-
Al2O3 samples. The characteristic peaks of γ-Al2O3 
(2θ= 37°, 45° and 67°) was observed in both spectra 
that was in agreement with published literatures 
[21, 22]. The crystal size of γ-Al2O3 was determined 
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using Scherer equation through XRD pattern of 
γ-Al2O3, which was in nano scale (approximately 
25-30 nm). From the Mn/γ-Al2O3 pattern, typical 
diffraction peaks of crystalline Mn oxides cannot 
be observed except those of γ-Al2O3 support. In 
addition, decreasing the intensity of characteristic 
peaks corresponding to γ-Al2O3 can be observed. 
It seems to suggest that through the impregnation 
of γ-Al2O3 the adsorption of salt solution has been 
occurred and during the drying and calcination in 
air the Mn-oxide particles has been formed and 
physically supported on γ-Al2O3 surface in the 
high dispersion form. The above conclusion will 
be reasonable if we accept that the Outer-Sphere 
complex has been formed when the adsorption of 
Mn2+ is occurred [23].

3.2. Scanning electron microscopy

  The scanning electron micrographs of both γ-Al2O3 
and Mn/ γ-Al2O3 catalysts are shown in Figure 3. 

The particles of the γ-Al2O3 are small (<100 nm) 
and they have approximately similar size. SEM 
images approved the nano structure of γ-Al2O3 
predicted by Scherer equation. The morphology 
of Mn/γ-Al2O3 is present in Figure 3.b. There are 
more small particles in SEM micrograph of Mn/γ-
Al2O3 compared to γ-Al2O3, which is ascribed to the 
presence of manganese oxides.

3.3. Transmission electron microscopy

To confirm the nano structure of catalysts, TEM 
images were taken. The TEM images of catalysts 
are present in Figure 4. Because of agglomeration of 
particles (Figure 4.a), detection of discrete particles 
is difficult, but it can be observed some particles 
with size less than 100 nm. Figure 4.b shows the 
TEM image of Mn/γ-Al2O3. The black spots in these 
images are ascribed to manganese oxides. These 
images approve the results predicted by Scherer 
formula and obtained by SEM. 

Figure 2: XRD pattern of γ-Al2O3 and Mn/γ-Al2O3
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3.4. Catalytic activity

To study the catalytic activity of catalysts, 
conversions of 2-propanol over γ-Al2O3 and Mn/ 
γ-Al2O3 were investigated. At First we studied the 
conversion of 2-propanol at absence of catalyst at 
different temperatures (thermal oxidation). Light-
off curve for this study is shown in Figure 5. At 
the absence of catalyst maximum conversion of 
30% was resulted for 2-propanol at 450°C and at 
lower temperatures the conversion is very low. 
Since all sampling are carried out after establishing 
steady state condition and 30 min after each run, 
we sure that the conversion is due to oxidation nor 
adsorption.

Figure 6 shows the light-off curves of 2-propanol 
over nano structure pure γ-Al2O3 and Mn loaded 
γ-Al2O3. The results show that the conversion of 
2-propanol over Mn/γ-Al2O3 is higher than that of 
it over pure γ-Al2O3. These results confirmed the 
higher catalytic activity of Mn/γ-Al2O3 respect to 
pure γ-Al2O3. This is attributed to active sites of 
manganese oxides on the alumina. Since the oxygen 
atom in 2-propanol has an unpaired electron, it 
could easily interact with the vacant p-orbital of 
manganese ion in Mn/γ-Al2O3 catalyst leading to 
the breakage of the C-O bond in the molecule. 
The interaction of sorbate molecules (2-propanol) 
with sorbent (Mn/γ-Al2O3) could be in the form 

Figure 3: SEM pattern of (a) γ-Al2O3  (b) Mn/γ-Al2O3

Figure 4: TEM images of (a): γ-Al2O3  (scale: 0.1 μm) and (b):Mn/γ-Al2O3
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of van der Waals forces and electrostatic forces. 
The magnitude of the forces depends on the polar 
nature of the sorbate and the sorbent. On polar 
surfaces, electrostatic forces dominated over van 
der Waals forces and thus the interaction intensity 
gets higher. 

4. CONCLUSIONS

Catalytic conversion of 2-propanol on nano structure 

pure and Mn loaded γ-Al2O3 was studied. This study 
shows the better efficiency of catalytic oxidation 
compared to thermal oxidation for conversion of 
organic compounds. In addition, it is concluded that 
introducing of manganese onto γ-Al2O3 improves 
activity of Mn/ γ-Al2O3 which confirms catalytic 
role of manganes in Mn/ γ-Al2O3. It is concluded 
that Mn/ γ-Al2O3 catalysts can be used as promising 
catalysts for catalytic conversion of organic 
compounds.
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organic compounds.
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