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Abstract:
Design of crystal-like lattices can be achieved by using some net operations. Hypothetical networks, thus 
obtained, can be characterized in their topology by various counting polynomials and topological indices 
derived from them. The networks herein presented are related to the Dyck graph and described in terms of 
Omega polynomial and PIv polynomials.
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1. INTRODUCTION

Novel carbon allotropes have been discovered and 
studied for applications in nano-technology, in the 
last twenty years. Among the carbon structures, 
fullerenes (zero-dimensional), nanotubes (one 
dimensional), graphene (two dimensional) and 
spongy carbon (three dimensional) were the most 
challenging materials [1, 2]. Inorganic clusters, like 
zeolites, also attracted the attention of scientists. 
Recent articles in crystallography promoted the 
idea of topological description and classification of 
crystal structures [3-8].

This study presents two hypothetical crystal-
like nano-carbon structures, with the topological 
description in terms of Omega and PIv counting 
polynomials.

2. LATTICE  BUILDING

The networks making - the subject of our discussion- 
were built up by the unit designed by the net 
operation sequence Op(Q(C)), performed on the 
Cube C. 

Recall, the Quadrupling Q (also called Chamfering) 
is a composite operation, which truncates the 
triangulation on the old faces of a polyhedral 
object and finally deletes the original edges. The 
Q operation leaves unchanged the orientation of 
the polygonal faces. The opening operation Op 
is achieved by adding one point of degree two on 
each of the boundary edges of the parent faces that 
become the open faces. In Op2a version (see below), 
two points are alternatively added on the boundary 
edges of the parent faces. More about map/net 
operations, the reader can find in refs. [9-13]. 

This unit is the zig-zag isomer (Figure 1, left) and, 
together with its “armchair” isomer (Figure 1, 
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right), were designed by the sequence Op2a(Q(C)),  
and proposed by Diudea as representations of the 
celebrated Dyck graph [14]; this graph is built up on 
32 vertices of valence 3, it has 48 edges, 12 octagons, 
girth 6, diameter 5, and the chromatic number 2; it 
is non-planar and has the minimal genus g = 1(i.e., 
there exists an embedding of the graph on the torus). 
Cycle counting on the finite representation revealed 
12 octagons and 16 hexagons. As units of infinite 
lattices, the units show 12 octagons and their genus 
[15] (i.e., the number of simple tori consisting a 
structure) is g=3.

There are two ways to design networks using a 
repeating unit: (i) junction Jn by an edge of the 
vertices/atoms of degree 2 (Figure 2a) and (ii) 
identification Id of some identical features (Figure 
2,b and c), in two close units. In our case, the atoms 

of degree 2 were identified, thus resulting in four-
connected atoms (and rings); by this reason we call 
this a “spiro” lattice.

The Jn net is triple periodic (Figure 3) while the Id 
net is only double periodic ((b,c,c), in Figure 2) as 
also shown in the corner representation of a cubic 
domain of the lattice (Figure 4, left).

These structures show large hollows, as those 
encountered in zeolites, natural alumino-silicates 
widely used in synthetic chemistry as catalysts.

3. DEFINITIONS

In a connected graph G(V,E), with the vertex set 
V(G) and edge set E(G), two edges e = uv and f = 
xy of G are called codistant e co f  if they obey the 
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Figure 1. Dyck graph-like units with R[8]=12: the zig-zag “Z” unit (left)  and the armchair unit 
“A” (right) 
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Figure 2. The unit 56_Op(Q(C)) in lattice building by junction (a) and identification (b and c).  

 

The Jn net is triple periodic (Figure 3) while the Id net is only double periodic ((b,c,c), 

in Figure 2) as also shown in the corner representation of a cubic domain of the lattice (Figure 4, 

left). 

 
 
Figure 3. Unit (designed by Op(Q(C)) in a “Jn” (R[6],R[8]) network; the cubic domain (left) in 
its corner representation (right). 
 

  
 
Figure 4. Unit (designed by Op(Q(C)) in an “Id” (R[4],R[8]) network; the cubic domain (left) in 
its corner representation (right - only two pair edges of the domain are the same while the third 
pair is distinct, the net being double periodic). 
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relation [16]:

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =            (1)

Which is reflexive, that is, e co e holds for any 
edge e of G, and symmetric, i.e., if e co f then f 
co e but, in general, relation co is not transitive. 
If “co” is also transitive, thus an equivalence 
relation, then G is called a co-graph and the 
set of edges ( ) : { ( ); }c e f E G f co e= ∈  
is called an orthogonal cut oc of G, E(G) 
being the union of disjoint orthogonal cuts: 

1 2( ) ... , ,k i jE G c c c c c i j= ∪ ∪ ∪ ∩ =∅ ≠ . 
Klavžar [17] has shown that relation co is a theta 
Djoković-Winkler relation [18, 19].

Two edges e and f of a plane graph G are in relation 

opposite, e op f, if they are opposite edges of an 
inner face of G. Note that the relation co is defined 
in the whole graph while op is defined only in faces/
rings. Using the relation op the edge set of G can be 
partitioned into opposite edge strips, ops. An ops is a 
quasi-orthogonal cut qoc, since op is, in general, not 
transitive. In co-graphs, the two strips superimpose 
to each other, then { } { }k kc s= , for any integer k.

A graph G is a partial cube if it is embeddable in 
the n-cube nQ , which is the regular graph whose 
vertices are all binary strings of length n, two 
strings being adjacent if they differ in exactly one 
position [15]. The distance function in the n-cube 
is the Hamming distance. A hypercube can also be 
expressed as the Cartesian product: 1 2

n
n iQ K==� 1 2

n
n iQ K==�P   
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Figure 3: Unit (designed by Op(Q(C)) in a “Jn” (R[6],R[8]) network; the cubic domain (left) 
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Figure 4: Unit (designed by Op(Q(C)) in an “Id” (R[4],R[8]) network; the cubic domain (left) 
in its corner representation (right - only two pair edges of the domain are the same while the third pair
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For any edge e=(u,v) of a connected graph G let nuv 
denote the set of vertices lying closer to u than to v: 

{ }( ) | ( , ) ( , )uvn w V G d w u d w v= ∈ < . It follows 
that { }( ) | ( , ) ( , ) 1uvn w V G d w v d w u= ∈ = + . 
The sets (and subgraphs) induced by these vertices, 
nuv and nvu, are called semicubes of G; the semicubes 
nuv and nvu are opposite semicubes and disjoint (to 
each other) [20,21]. A graph G is bipartite if and only 
if, for any edge of G, the opposite semicubes define a 
partition of V(G): ( )uv vun n v V G+ = = .

The semicubes Wab and Wba are opposite semicubes

Let G be a connected graph and S(G)={ 1 2, ,..., kS S S } be 
the ops strips of G. Then the ops strips form a partition 
of E(G). The length of ops is taken as maximum 
(among all possible ops). It depends on the size of 
the maximum fold face/ring Fmax/Rmax considered, 
so that any result on Omega polynomial will have 
this specification.

Denote by m(G,s) the number of ops of length s=|sk| 
and define the Omega polynomial as [22-30]:

( ) ( ), , s
s

G x m G s xΩ = ⋅∑ 		              (2)

Its first derivative (in x=1) equals the number of 
edges in the graph:

( ) ( ) ( )' ,1 ,
s

G m G s s e E GΩ = ⋅ = =∑ 	             (3)

On Omega polynomial, the Cluj-Ilmenau [15] index, 
CI=CI(G), was defined:

2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω         (4)

The opposite semicubes of a partial cubes represent 
(in general graphs) the vertex proximities of (the 
endpoints of) edge e=(u,v), which the PIv (Ashrafi 
et al. [31-34]) and Cluj CJe (Diudea [35-39])  
polynomials count. The PIv(x) is defined as:

( ) n nuv vu
v ePI x x += ∑ 			               (5)

Relation (5) holds in any graph. The first derivative 
(in x=1) of PIv(x) gives the topological index 
PIv(G), which takes the maximal value in bipartite 

graphs:

(1) | ( ) | | ( ) |vPI e v E G V G′ = ⋅ = ⋅ 	             (6)

In general graphs, this index can be written according 
to Ilić [40]:

	
( ) ( )'

, , ,1v v u v v u u v
e uv e uv

PI G PI n n V E m
= =

= = + = ⋅ −∑ ∑ 	

(7)

where nu,v, nv,u count the non-equidistant vertices 
with respect to the endpoints of the edge e=(u,v) 
while m(u,v) is the number of equidistant vertices 
vs. u and v.  However, in bipartite graphs, there are 
no equidistant vertices so that the last term in (7) 
will be missing. The value of PIv(G) is thus maximal 
in bipartite graphs, among all graphs on the same 
order; the result of (7) can be used as a criterion for 
checking the “bipativity” of a graph.

4. POLYNOMINALS  IN  CRYSTAL-LIKE 
NETWORKS

Formulas for calculating the two above polynomials, 
in the two networks here designed, are given in the 
following tables, along with some examples. The 
formulas were derived by inspecting the networks 
included in a cubic domain (a,a,a). The indices 
were calculated by the Topo Cluj original program 
called Nano Studio [41] and a home-made program 
(supplied by A. Ilić), respectively.

5. CONCLUSIONS

Two new hypothetical crystal-like networks were 
designed, starting from the Z-isomer of a Dyck 
graph representation, by using some net operations. 
Their topology is described in terms of Omega and 
PIv polynomials. Close formulas for calculating this 
polynomial and the derived indices were given.

The polynomial description was proved to be useful 
in discriminating among structures built up from 
the same constructive repeat unit but following 
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 4. Polynomials in crystal-like networks 

Formulas for calculating the two above polynomials, in the two networks here 

designed, are given in the following tables, along with some examples. The formulas 

were derived by inspecting the networks included in a cubic domain (a,a,a). The indices 

were calculated by the Topo Cluj original program called Nano Studio [41] and a home-

made program (supplied by A. Ilić), respectively. 

 
Table 1. Omega and PIv polynomials in “Jn” (R[6],R[8]) net (unit designed by Op(Q(C))) 

Unit Formulas 
Jn_aeven 
 

32 4 3 6 6( _ , ) 3 ( 1) 4 8 a
evenJn a x a a x a x x      

2( _ ,1) 12 (7 1)evenJn a a a    
6 3 2( _ ,1) 288 108 36evenJn a a a a     

2 4 3 2( _ ) 48 (141 42 3 4 1)evenCI Jn a a a a a a      
Jn_aodd 2 22 4 3 6 6 ( 1) 6(6 2)( _ , ) 3 ( 1) 4 2 6a a a

oddJn a x a a x a x x x        
2( _ ,1) 12 (7 1)oddJn a a a    

6 3 2( _ ,1) 288 108 60oddJn a a a a     
2 4 3 2( _ ) 48 (141 42 3 4 1)oddCI Jn a a a a a a      

 
Jn 
 

3( ) 56v Jn a  
32 56( , ) 12 (7 1)v a

vPI Jn x e x a a x      
5( ,1) 672 (7 1)vPI Jn e v a a      

 
Table 2. Examples to the formulas in Table 1. 

aeven Omega (Rmax[8]) v e CI PIv

2 12x4+32x6+8x48 448 624 369600 279552 
4 144x4+256x6+8x384 3584 5184 25682688 18579456 
6 540x4+864x6+8x1296 12096 17712 300238272 214244352 
aodd    
3 54x4+108x6+2x144+6x168 1512 2160 4450032 3265920 
5 300x4+500x6+2x720+6x760 7000 10200 99514800 71400000 
7 882x4+1372x6+2x2016+6x2072 19208 28224 762643056 542126592 
 
 
Table 3. Omega polynomial in Id, spiro (R[4],R[8]) net (unit designed by Op(Q(C))) 

22 12 2 16 16( , , ) 2 2a a aId spiro x a x a x a x        
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5( ,1) 672 (7 1)vPI Jn e v a a      

 
Table 2. Examples to the formulas in Table 1. 

aeven Omega (Rmax[8]) v e CI PIv

2 12x4+32x6+8x48 448 624 369600 279552 
4 144x4+256x6+8x384 3584 5184 25682688 18579456 
6 540x4+864x6+8x1296 12096 17712 300238272 214244352 
aodd    
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Table 3. Omega polynomial in Id, spiro (R[4],R[8]) net (unit designed by Op(Q(C))) 

22 12 2 16 16( , , ) 2 2a a aId spiro x a x a x a x        
3( , ,1) 72Id spiro a   

3 2( , ,1) 8 (32 100 9)Id spiro a a a     
4 2( , ) 32 (162 8 25)CI Id spiro a a a    

2 2( , ) (104 48( 2)) 8 (6 1)v ID spiro a a a a      
23 8 (6 1)( , , ) 72v a a

vPI Id spiro x e x a x      

5( , ,1) 576 (6 1)vPI Id spiro e v a a      

Table 4. Examples of the formula in Table 3. 

a Omega (Rmax[8]) v e CI PIv

3 18x36+18x48+3x144 1368 1944 3652128 2659392 
4 32x48+32x64+4x256 3200 4608 20766720 14745600 
5 50x60+50x80+5x400 6200 9000 79700000 55800000 
 
 
 
 

5. Conclusions 

 Two new hypothetical crystal-like networks were designed, starting from the Z-

isomer of a Dyck graph representation, by using some net operations. Their topology is

described in terms of Omega and PIv polynomials. Close formulas for calculating this 

polynomial and the derived indices were given. 

 The polynomial description was proved to be useful in discriminating among 

structures built up from the same constructive repeat unit but following different 

schemes of assembling, e.g. joining “Jn” or identifying “Id” ones. Formulas for the 

structure parameters as: the number of atoms/vertices and bonds/edges were also 

derived and examples of calculations were given. 
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different schemes of assembling, e.g. joining “Jn” 
or identifying “Id” ones. Formulas for the structure 
parameters as: the number of atoms/vertices and 
bonds/edges were also derived and examples of 
calculations were given.
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