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Abstract:
In this paper an algorithm for computing the Balaban and Randic indices of any simple connected graph was 
introduced. Also these indices were computed for IPR C80 fullerene isomers, Zigzag nanotubes and graphene 
by GAP program.
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1. INTRODUCTION

Topological descriptors are derived from hydrogen-
suppressed molecular graphs, in which the atoms 
are represented by vertices and the bonds by 
edges. The connections between the atoms can be 
described by various types of topological matrices 
(e.g., distance or adjacency matrices), which can be 
mathematically manipulated so as to derive a single 
number, usually known as graph invariant, graph-
theoretical index or topological index[1,2].
Topological indices based on distances, are used 
to describe the molecular structure of a series of 
alkylcupferrons used as mineral collectors in the 
beneficiation of a Canadian uranium ore. There is 
a linear relation between any of these topological 
indices and the separation efficiency of the 
alkylcupferrons considered. The data fit into two 
separate curves, differentiating the alkylcupferrons 
into two subclasses, one with rigid rod-like 
methyl substituents and the other with flexible 
alkyl substituents. As in the case of Wiener index, 
connectivity index has also been correlated with 
physical properties such as density and heat of 
vaporization [3-7].

Let G be a connected graph. The vertex-set and 
edge-set of G are denoted by V(G) and E(G) 
respectively. The distance between the vertices u 
and v, d(u,v), in a graph is the number of edges in a 
shortest path connecting them. Two graph vertices 
are adjacent if they are joined by a graph edge. 
The degree of a vertex ( )i V G∈ is the number of 
vertices joining to i and denoted by iδ . The Balaban 
index of a molecular graph G was introduced by 
A.T. Balaban [8,9]. It is denoted by J(G) and defined 

as 
( )

1( )
1 ( ) ( )ij E G

mJ G
d i d jµ ∈

=
+ ∑  where m is the 

number of edges of G and ( )Gµ is the cyclomatic 
number of G. Noting that the cyclomatic number is 
the minimum number of edges that must be removed 
from G in order to transform it to an acyclic graph; 
it can be calculated using ( ) 1G m nµ = − + where 
n is the number of vertices and d(i) is the sum of 
distances between vertex i and all other vertices of 
G, and the summation goes over all edges from the 
edge set E(G).
The Balaban index appears to be a very useful 
molecular descriptor with attractive properties 
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[10,11]. The connectivity indices are extensively 
used as molecular descriptors in predicting the 
retention indices in chromatographic analysis of 
various isomeric aliphatic, aromatic and polycyclic 
hydrocarbons [12-14]. Randic or connectivity index 
was introduced by Milan Randic in 1975 [15] defined 

as 
1( ) ,

ij i j

R G
δ δ

= ∑  where ij runs over all edges 

in G. In a series of papers, Balaban and Randic 
indices of some nanotubes are computed [16-18]. In 
this paper we give an algorithm for computing the 
Balaban and Randic indices of any graph. Also, by 
using GAP program [19], we compute these indices 
for IPR C80 fullerene isomers, zigzag nanotubes and 
graphene. IPR fullerenes are described in [20-22].

2. An algorithm for computing the Balaban 
and Randic indices

In this section an algorithm for computing the 
Balaban and Randic indices of any graph was 
introduced.
I.	 At first, one number was assigned to each 

vertex.

II.	 The set of vertices that are adjacent to vertex i 
is denoted by N(i).

The set of vertices that their distance to vertex 
u  is equal to ( )0≥tt  is denoted by  ( )tD u and 
consider 0 ( ) { }.D u u= So, the following relations 
are obtained:

•	
0

( ) ( ) , ( )t
t

V G D u u V G
≥

= ∀ ∈  

•	
( ) 1

( ) ( , ) ( ) , ( )t
v V G t

d u d u v t D u u V G
∈ ≥

= = × ∀ ∈∑ ∑

•	 ( )u N uδ =

According to the above relations, we can obtain the 
Balaban index by determining the  tD ( )u for every 
vertex u.
III.	 The distance between vertex i  and its adjacent 

vertices is equal to 1, therefore ,1 ( ).iD N i=  
For each 1,, ≥∈ tDj ti , the distance be-

tween each vertex of )(\)( 1,, −titi DDjN   
and the vertex i  is equal to 1+t . Thus we 
have: 

.1,)(\)(( 1,,1, ,
≥= −∈+ tDDjND titiDjti ti



According to the above equation we can obtain 

, , 2,i tD t ≥  for each ( )i V G∈ . By determining 
the sets Di,t we can compute the Balaban and Randic 
indices of G.

3. Computing the Balaban and Randic 
indices for IPR C80 fullerene isomers

Fullerenes consist of the networks of pentagons and 
hexagons. To be a closed shape, a fullerene should 
exactly have 12 pentagon faces, but the number of 
hexagons faces can be extremely variable. Fuller-
enes were discovered in 1985 by Robert Curl, Har-
old Kroto and Richard Smalley at the University of 
Sussex and Rice University, and are named after 
Richard Buckminster Fuller. The fullerene gallery 
at the address http://www.cochem2.tutkie.tut.ac.jp/
Fuller/fsl/fsl.html presents many of them including 
non-IPR ones. Seven possible IPR isomers C80 are 
shown in Figure 1.
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Figure 1: Seven possible isomers of C80 with their symmetry 
according to an Atlas of fullerene [23].

For computing these indices for IPR C80 fullerene 
isomers, one number is firstly assigned to any ver-
tex of the graph and then according to the above 
algorithm, we can write a GAP program to deter-
mine N(i) and Di,t . Take the IPR isomer D5h of C80 
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fullerene and assign to any vertex of the graph one 
number as in Figure 2.

Figure 2: The IPR isomer D5h of C80 Fullerene which is 
numbered.

Using the following GAP program, the Balaban 
and Randic indices for the above IPR isomer of C80 
fullerene are computed as follows: 

n:=80; k:=[]; N:=[];
k[1]:=[1..5]; k[2]:=[6..20]; k[3]:=[21..40]; 
k[4]:=[41..60]; k[5]:=[61..75]; k[6]:=[76..80];
for i in [1..6] do
 y:=Size(k[i]);
 for j in [1..y] do
  x:=k[i][j];
  N[x]:=[x-1,x+1];
 od;
od;
D1:=[9,12,15,18];
for i in [1..4] do 
 x:=D1[i]; N[i][3]:=x; N[x][3]:=i;
od;
D2:=Difference(k[2],Filtered(k[2],i->(i mod 
3)=0));
D3:=Filtered(k[3],i->(i mod 2)=1);
for i in [1..9] do 

 x:=D3[i+1]; N[D2[i]][3]:=x; N[x][3]:=D2[i]; 
od;
D4:=Difference(k[3],D3);
D5:= Filtered(k[4],i->i mod 2=1);
for i in [1..9] do 
 x:=D5[i+1]; N[D4[i]][3]:=x; N[x][3]:=D4[i]; 
od;
D6:=Difference(k[4],D5); 
D7:= Filtered(k[5],i->(i mod 3)<>2);
for i in [1..9] do 
 x:=D7[i+1]; N[D6[i]][3]:=x; N[x][3]:=D6[i]; 
od;
D8:=Difference(k[5],D7);
for i in [1..4] do
 x:=k[6][i+1]; N[D8[i]][3]:=x; N[x][3]:=D8[i]; 
od;
N[1]:=[2,5,9]; N[5]:=[1,4,6]; N[6]:=[5,7,
20];N[20]:=[6,19,21];N[21]:=[20,22,40]; 
N[40]:=[21,39,41]; N[41]:=[40,42,60];N[60]:=[
61,59,41];N[61]:=[60,62,75]; N[74]:=[73,75,76]; 
N[75]:=[58,61,74]; N[76]:=[74,77,80]; 
N[80]:=[71,76,79];
v:=[]; D:=[];
for i in [1..n] do
 D[i]:=[]; u:=[i]; D[i][1]:=N[i]; v[i]:=Size(N[i]);
 u:=Union(u,D[i][1]);
r:=1; t:=1;
while r<>0 do
D[i][t+1]:=[];
for j in D[i][t] do
 for m in Difference (N[j],u) do
 AddSet(D[i][t+1],m);
od; od;
u:=Union(u,D[i][t+1]);
if D[i][t+1]=[] then r:=0;fi;
t:=t+1;
od;od;
m:=(1/2)*Sum(v)-n+1;
d:=[];deg:=[];
for i in [1..n] do
d[i]:=0;
deg[i]:=Size(N[i]);
for t in [1..Size(D[i])] do
d[i]:=d[i]+t*Size(D[i][t]);
od;od;
B:=0;R:=0;
for i in [1..n] do
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 for j in N[i] do
 B:=B+ER(1/((d[i]*d[j])));
R:=R+ ER(1/((deg[i]*deg[j])));
od;
od;
B:=m*B/2;#(this value is equal to Balaban index of 
the graph)
R:=R/2; #(this value is equal to Randic index of the 
graph)

Similar programs were applied for computing the 
Balaban and Randic indices of other IPR isomers 
C80 fullerene and results are shown in Table 1. For 
all C80 isomers, the Randic index is constant, and it’s 
equal to 13.333.

Table 1: The Balaban index of IPR C80 Fullerene 
isomers.
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4. Computing the Balaban and Randic 
indices for Zigzag nanotubes and graphene
 
In this section, the Balaban and Randic indices of 
zigzag nanotubes and grapheme were computed 
similar to those given for IPR C80 fullerene.

Figure 3: Zigzag[8,8] nanotube.

To do this we denote the number of hexagons in the 
first row by and the number of rows by . In each 
row, there are vertices and hence the number of 
vertices in this nanotubes is equal to . The following 
program is the same as the last program.
p:=3; q:=8;#(for example)
n:=2*p*q; N:=[];
K1:=[1..2*p]; V1:=[2..2*p-1]; 
for i in V1 do
 if i mod 2=0 then N[i]:=[i-1,i+1,i+2*p];
  else N[i]:=[i-1,i+1]; fi;
od;
N[1]:=[2,2*p]; N[2*p]:=[1,2*p-1,4*p];
K:=[2*p+1..n];
K2:=Filtered(K,i->i mod (4*p) in [1..2*p]);
for i in K2 do 
  if i mod 2 =0 then N[i]:=[i-1,i+1,i+2*p];
 else N[i]:=[i-1,i+1,i-2*p]; fi;
  if i mod (4*p)=1 then N[i]:=[i+1,i-2*p,i+2*p-1]; 
fi;
  if i mod (4*p)=2*p then N[i]:=[i-1,i-
2*p+1,i+2*p];fi;
od;
K3:=Filtered(K,i->i mod (4*p) in 
Union([2*p+1..4*p-1],[0]));
for i in K3 do
   if i mod 2=0 then N[i]:=[i-1,i+1,i-2*p];
 else N[i]:=[i-1,i+1,i+2*p]; fi;
   if i mod (4*p)=2*p+1 then N[i]:=[i+1,i+2*p-
1,i+2*p]; fi;
   if i mod (4*p)=0 then N[i]:=[i-1,i-2*p,i-2*p+1]; 
fi; 
od;
for i in [n-2*p+1..n] do 
  if q mod 2=1 then 
    if i mod 2 =0 then N[i]:=[i-1,i+1];
   else N[i]:=[i-1,i+1,i-2*p]; fi;
     if i mod (4*p)=1 then N[i]:=[i+1,i-2*p,i+2*p-1]; 
fi;
     if i mod (4*p)=2*p then N[i]:=[i-1,i-2*p+1];fi; 
  else
    if i mod 2=0 then N[i]:=[i-1,i+1,i-2*p];
   else N[i]:=[i-1,i+1]; fi; 
  if i mod (4*p)=2*p+1 then N[i]:=[i+1,i+2*p-1]; 
fi;
  if i mod (4*p)=0 then N[i]:=[i-1,i-2*p,i-2*p+1]; 
fi;

Iranmanesh and Alizadeh



32

 fi;
od;
v:=[]; D:=[];
for i in [1..n] do
 D[i]:=[]; u:=[i]; D[i][1]:=N[i]; v[i]:=Size(N[i]);
 u:=Union(u,D[i][1]);
r:=1; t:=1;
while r<>0 do
D[i][t+1]:=[];
for j in D[i][t] do
 for m in Difference (N[j],u) do
 AddSet(D[i][t+1],m);
od; od;
u:=Union(u,D[i][t+1]);
if D[i][t+1]=[] then r:=0;fi;
t:=t+1;
od;od;
m:=(1/2)*Sum(v)-n+1;
d:=[];deg:=[];
for i in [1..n] do
d[i]:=0;
deg[i]:=Size(N[i]);
for t in [1..Size(D[i])] do
d[i]:=d[i]+t*Size(D[i][t]);
od;od;
B:=0;R:=0;

for i in [1..n] do
 for j in N[i] do
 B:=B+ER(1/((d[i]*d[j])));
R:=R+ ER(1/((deg[i]*deg[j])));
od;od;
B:=m*B/2;#(this value is equal to Balaban index 
of the graph)
R:=R/2; #(this value is equal to Randic index of the 
graph)

By a similar way, the Balaban and Randic indices 
for graphene can be obtained. The number of 
hexagons in the first row is denoted by and the 
number of rows by .

Figure 4: Graphene[4,8] nanotube.

9

P q Balaban index of 
zigzag[p,q]

Randic index of 
zigzag[p,q]

Balaban index of 
grapheme[p,q] 

Randic index of 
grapheme[p,q] 

2 2 1.95970 3.93265 1.71379 7.93265 

2 3 1.67044 5.93265 1.42196 11.93265299 

4 5 1.096412 19.86531 0.82065 39.86530 

3 5 1.16766 14.89898 0.92423 29.89897 

6 4 1.03259 23.79796 0.70617 47.79795 

5 3 1.27712 14.83163 0.88425 29.83163 

7 7 0.73099 48.76429 0.51655 97.76428 

Table2. Balaban and Randic indices of zigzag[p,q] nanotubes and graphene[p,q]. 

Conclusion
An algorithm has been presented for computing the Balaban and Randic indices of any 
connected simple graph. According to this algorithm and using the GAP program, a 
program can be written to compute these indices quickly. This method has been used 
here for the first time. We tested the algorithm to calculate the Balaban and Randic 
indices of IPR C80 fullerene isomers, zigzag nanotubes and graphene. 
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graphene are equal to

d[i]:=
deg[i]
for t i
d[i]:=
od;od
B:=0
for i i
for j 
B:=B

R:=R
od;od
B:=m
R:=R

By a 
numb

The R

(R zi

exam
nanot

=0;
i]:=Size(N[i]
in [1..Size(D
=d[i]+t*Size
d;
0;R:=0;
in [1..n] do 
in N[i] do 

B+ER(1/((d[
R+ ER(1/((de
d;
m*B/2;#(this
R/2; #(this va

similar way
ber of hexag

Randic index

)igzag p


 


mple, we ob
tubes for som

]); 
D[i])] do 
e(D[i][t]); 

[i]*d[j]))); 
eg[i]*deg[j])

s value is equ
alue is equal

y, the Balab
ons in the fir

x of zigzag[p
2 6 3 5

3
q 

tained the B
me p and q b

])));

ual to Balaba
l to Randic in

ban and Ran
rst row is de

Figure4. Gra

p,q] nanotub
5 and




(R g

Balaban and
by GAP prog

8

an index of t
ndex of the g

ndic indices
enoted by p a

aphene[4,8] n

bes and graph

)graphene 

d Randic in
gram. In Tab

the graph) 
graph)

s for graphe
and the numb

anotube. 

hene are equ
52
3

p q  


ndices of zi
ble 2, these n

ne can be o
ber of rows 

ual to 
4
6
 


, resp

igzag[p,q] a
numbers are 

obtained. Th
by q .

ectively. Fo

and graphen
presented.

he

or

ne

d[i]:=
deg[i]
for t i
d[i]:=
od;od
B:=0
for i i
for j 
B:=B

R:=R
od;od
B:=m
R:=R

By a 
numb

The R

(R zi

exam
nanot

=0;
i]:=Size(N[i]
in [1..Size(D
=d[i]+t*Size
d;
0;R:=0;
in [1..n] do 
in N[i] do 

B+ER(1/((d[
R+ ER(1/((de
d;
m*B/2;#(this
R/2; #(this va

similar way
ber of hexag

Randic index

)igzag p


 


mple, we ob
tubes for som

]); 
D[i])] do 
e(D[i][t]); 

[i]*d[j]))); 
eg[i]*deg[j])

s value is equ
alue is equal

y, the Balab
ons in the fir

x of zigzag[p
2 6 3 5

3
q 

tained the B
me p and q b

])));

ual to Balaba
l to Randic in

ban and Ran
rst row is de

Figure4. Gra

p,q] nanotub
5 and




(R g

Balaban and
by GAP prog

8

an index of t
ndex of the g

ndic indices
enoted by p a

aphene[4,8] n

bes and graph

)graphene 

d Randic in
gram. In Tab

the graph) 
graph)

s for graphe
and the numb

anotube. 

hene are equ
52
3

p q  


ndices of zi
ble 2, these n

ne can be o
ber of rows 

ual to 
4
6
 


, resp

igzag[p,q] a
numbers are 

obtained. Th
by q .

ectively. Fo

and graphen
presented.

he

or

nerespectively. For example, we obtained the Balaban 
and Randic indices of zigzag[p,q] and graphene 
nanotubes for some p and q by GAP program. In 
Table 2, these numbers are presented.

5. CONCLUSION

An algorithm has been presented for computing 
the Balaban and Randic indices of any connected 
simple graph. According to this algorithm and 
using the GAP program, a program can be written 
to compute these indices quickly. This method 
has been used here for the first time. We tested 
the algorithm to calculate the Balaban and Randic 
indices of IPR C80 fullerene isomers, zigzag 
nanotubes and graphene.
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