
65

Electronic Properties of a Concentric Triple Quantum Nanoring

H. K. Salehani1, M. Esmaeilzadeh2*, Kh. Shakouri2, M. R. Abolhassani1, 
E. Faizabadi2, and M. H. Majlesara3

1- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, 
Tehran, I.R. Iran

2- Department of Physics, Iran University of Science and Technology, Tehran, I.R. Iran
3- Department of Physics, Faculty of Science, Tarbiat Moallem University, Tehran, I.R. Iran

(*) Corresponding author: mahdi@iust.ac.ir
(Received: 05 Jan. 2011 and Accepted: 18 Apr. 2011)

 
Abstract:
In this paper, we study the electronic properties of a concentric triple quantum ring using exact diagonalization 
technique. The energy spectra and magnetization for a single electron and two electrons, in the presence of an 
applied magnetic field, are calculated and discussed. It is shown that, for two-interacting electrons, the period 
of Aharonov-Bohm oscillations decreases to the half of that for non-interacting electrons which shows the 
fractional Aharonov-Bohm oscillations for interacting electrons. It is found that the spin-singlet state for two 
electrons is more stable than the spin-triplet states. Also, magnetization effect decreases due to the electron-
electron interaction.
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1. INTRODUCTION

Over the last two decades, the study of quantum 
dots as tunable artificial atoms and quantum ring 
structures which exhibit the Aharonov-Bohm effect, 
have attracted great interest [1-6]. Quantum rings 
(QRs), which stand as an alternative to quantum 
dots (QDs) for eventual use in nanotechnology 
devices, are small conductor or semiconductor 
rings with few electrons. The size of QRs is of 
order of the phase-coherence length of electrons. 
A noticeable difference between the QDs and QRs 
arises from their topology that causes QRs display 
interesting phenomena such as persistent current 
which are not found in QDs. Double quantum rings 
(DQRs) structures can be considered as “artificial 
diatomic molecules” [7-9]. One type of DQRs that 

has attracted the interest of researchers during the 
last few years is concentric DQRs. The concentric 
DQRs have been fabricated by using droplet 
epitaxial growth [7, 10] as well as atomic force 
microscope tip oxidation techniques [11, 12]. 
In a number of theoretical works, DQRs with 
different configurations have been investigated [8, 
13-21]. The effect of coupling between the rings on 
the energy spectrum of a single electron has been 
studied by Fuster et al. [13]. Szafran and Peeters 
have studied energy spectra of a concentric DQR 
with 1-3 electrons [14]. The previous works on 
concentric DQRs have been extended by Climente 
et al. to investigate the ground state structure of 
self-assembled DQRs [15]. Planelles et al. have 
studied the electronic states of DQRs, for lateral 
configuration, within the frame of the effective mass 



66 Esmaeilzadeh, et al.

envelope function theory [19]. Chwiej and Szafran 
have investigated artificial molecular states formed 
in DQRs with the same configuration for a single 
electron as well as two and three electrons [8]. The 
electronic localization for few electrons in concentric 
DQRs in the presence of perpendicular magnetic 
field has been studied by Escartıin et al. [21]. 
Recently, fabrication of GaAs/AlGaAs concentric 
triple quantum rings (TQRs) has been reported by 
Somaschini et al. using an innovative growth method 
based on droplet epitaxy [22]. This motivated us to 
study electronic properties of TQRs. In a recent 
paper, we have studied the effects of donor impurity 
on energy spectra and energy gaps in a TQR [23]. In 
that study, the electron-electron interaction has been 
ignored. The present work is an extension of the 
above study to investigate the effects of electron-
electron interaction on energy spectra, Aharonov-
Bohm oscillations and magnetization in a TQR. The 
effects of inter-ring coupling for single electron in 
a TQR are also investigated in the present work. 
It is shown that Aharonov-Bohm oscillations with 
fractional period appear due to the electron-electron 
interaction. Also, electron-electron interaction 
decreases the magnetization and increases the 
energy levels. The organization of this paper is as 
fallows: A theoretical model is presented in Sec. 
2. The results of a numerical study are presented 
and discussed in Sec. 3. Finally, a summary and 
conclusions are given in Sec. 4.  

2. THEORETICAL  MODEL

In this section, a theoretical model for a coupled 
concentric TQR is presented. We assume that the 
vertical confinement is such narrow that the TQR 
can be considered as a two-dimensional system. 
The confinement potential of TQR is assumed to be 
parabolic as shown in figure 1. The single electron 
Hamiltonian in the presence of a magnetic field 
applied perpendicularly to the TQRs plane (i.e., 

ˆ zB=B e ) may be written as 

in the polar coordinates, where m∗  is the effective 
mass of the electron, ρ  is the electron radial 
distance from the center of rings, L is the quantum 
number of the angular momentum, /c eB mω ∗≡ is 
the cyclotron frequency and 
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is the parabolic confinement potential. In Eq. 

(2), 1 2,ω ω and 3ω  are the confinement potential 
strengths for internal, middle and external rings 
and R1, R2 and R3 are their corresponding radii, 
respectively. The second term in Eq. (1) is the 
centrifugal potential and the third and fourth ones 
are the diamagnetic and orbital Zeeman potentials, 
respectively. Note that the effect of the spin Zeeman 
potential is neglected in the present study. Using Eq. 
(1), the few electrons Hamiltonian can be written as
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where the first term in Eq. (3) is the Hamiltonian 
of N non-interacting electrons and the second one 
is the Coulomb interaction between electrons. Here, 
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Figure 1: Schematic view of a parabolic confinement 
potential for a coupled concentric TQR 
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ε  is the dielectric constant, oε  is the permittivity of 
vacuum and iρ  is the position vector of ith electron. 

3. NUMERICAL  STUDY  AND DISCUSSION

The wave functions and energy spectra of a single 
electron and few electrons are calculated numerically 
by using finite difference and exact diagonalization 
method [14]. For numerical calculations, the radius 
of rings are taken to be R1=40 nm, R2=70 nm and 
R3=105 nm and the width of rings are taken to be 
d1=20 nm, d2=25 nm and d3=30 nm corresponding 
to the concentric TQR fabricated recently [22]. 
We choose the GaAs values for dielectric constant 
and electron effective mass (i.e., 12.4ε = and 

0.067 em m∗ =  where em  is the free electron mass).  
The confinement strength of internal, middle 
and external rings can be calculated by using 

2 2 2
1 1 2 2 3 32 / , 2 / , 2 /m l m l m lω ω ω∗ ∗ ∗= = =  

where 1 1 2 2/ 2, / 2l d l d= = and 3 3 / 2l d=  are the 
half-width of the internal, middle and external rings, 
respectively [13,14]. This yields 1 22.8 ,meVω =  

2 14.6meVω = and 3 10.13 .meVω =

3.1. Single electron

Now, we calculate the energy spectrum and 
probability density of a single electron using 
Hamiltonian in Eq. (1). The electron probability 
density (i.e., 2| |ρ φ ) of the lowest state in the 
absence of the centrifugal potential (L=0) is shown 
in figure 2 for different magnetic fields B=0, 1.3 
and 2.3T. It is clear that for B=0, 1.3 and 2.3T the 
electron wave function is approximately localized in 
the external, middle and internal rings, respectively. 
The effect of the centrifugal potential on the 
electron probability density is shown in figure 3 for 
a constant magnetic field B=2.3T and for different 
angular momenta L=0, 10 and 13. As this figure 
shows, unlike the previous case, the lowest electron 
wave function for L=0, 10 and 13 is approximately 
localized in the internal, middle and external rings, 
respectively. By comparing figures 2 and 3, one can 
find that the centrifugal and diamagnetic potentials 
act opposite to each other. In the other words, the 

Figure 2: The single electron probability density
 of the lowest state with radii R1=40 nm, R2=70 nm 

and R3=105 nm as a function of radial distance 
for L=0 and different magnetic fields B=0, B=1.3T 

and B=2.3 T.

Figure 3: The single electron probability density 
of the lowest state in a TQR as a function of 

radial distance for B=2.3T and different angular 
momenta L=0, L=10 and L=13.

diamagnetic potential causes the electron to localize 
in the inner rings, while the centrifugal potential 
causes the electron to localize in the external rings. 
The single-electron energy spectrum as a function 
of the external magnetic field is plotted in figure 4 
for different angular momenta L=0, 1, 2,…, 6 (a) for 
a TQR and (b) for three isolated single QRs with 
the radii and confinement strengths same as the 
TQR. In figure 4(a), solid, dashed and dash-dotted 
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curves indicate the first, second and third lowest 
states of each quantum number L, respectively. The 
energy levels corresponding to different quantum 
numbers of angular momentum up to 6 are plotted 
with different colors. As figure 4(a) shows, for 
each angular momentum L, there is an anticrossing 
between the first and second energy levels as well as 
between second and third energy levels. The energy 
distance between the first and second energy levels 
at anticrossing points is greater than the energy 
distance between the second and third levels. As 
we see in figure 4(b), in contrast with TQR, there 
is no any anticrossing between energy levels with 
the same angular momenta for three isolated rings. 

Therefore, the anticrossings are induced due to the 
inter-ring coupling between the rings in a TQR. 

3.2. Few-electron system

The electronic properties of few electrons are 
investigated in this subsection by solving the few-
electron Schrodinger equation numerically [Eq. 
(3)]. The basis set of few-electron Hamiltonian is 
constructed using the single-electron eigenstates 
in the form of the Slater determinant [14]. The 
elements of the Coulomb potential matrix can be 
calculated by numerical integration of the Coulomb 
potential over the basis set. Here, we only study the 
electronic properties of a TQR with two electrons. 
Figure 5 shows the two-electron energy spectrum 
corresponding to different quantum numbers 
of total angular momentum as a function of the 
magnetic field (a) in the absence of Coulomb 
interaction (non-interacting electrons) and (b) in 
the presence of Coulomb interaction (interacting 
electrons). The solid curves indicate the energy 
levels for the spin-singlet state and the dashed 
curves indicate the energy levels for spin-triplet 
states. It is observed that for the two non-interacting 
electrons, the ground-state takes only even numbers 
of the total angular momentum (i.e., 0, 2, 4, …), 
while for the interacting case the ground state takes 
all integer (odd and even) numbers of total angular 
momentum. In addition, for the non-interacting 
electrons, the ground state includes only spin-
singlet state whereas, for the interacting electrons 
the ground state is switched between singlet and 
triplet states, alternatively. In the absence of the 
Coulomb interaction, for the odd quantum numbers 
of the total angular momentum, the energy levels 
with spin-singlet state (curves with circle marks) 
and spin-triplet states (curves with triangle marks) 
coincide with each other while for the even quantum 
numbers they are separated [solid and dashed curves 
in Figure  5 (b)]. Thus, in the case of non-interacting 
electrons, the intersections in the ground state are 
six-fold degenerate but in the interacting case, the 
degeneracy decreases and the intersections are two-
fold or four-fold degenerate. Note that the spin-
triplet states are three-fold degenerate. 
To see the effect of the Coulomb interaction on 
two-electron system clearly and compare it with 

Figure 4: The single-electron energy spectrum as 
a function of magnetic field for different quantum 
numbers of angular momentum (i.e., L=0, 1,… , 

6).  (a) for a TQR and  (b) for three isolated single 
quantum rings with the radii and confinement 

strengths same as the TQR. 
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non-interacting system, the energy levels of the two 
lowest states (ground and first excited states) are 
shown in figure 6. The circle marks show the spin-
singlet state and the triangle marks represent the 
spin-triplet states. In this figure, the upper graphs 
indicate the energy levels of the two-interacting 
electrons and the lower ones indicate the energy 
levels of two non-interacting electrons. As it is 
seen, the period of Aharonov-Bohm oscillations for 
interacting case is the half of that for non-interacting 
case which shows the fractional Aharonov-Bohm 
oscillations for interacting system. It is also apparent 

that the electron-electron interaction significantly 
increases the energy levels relative to the non-
interacting case.
Now, we investigate the addition energy and 
magnetization in a TQR. In figure 7, the chemical 
potential difference µ∆  is plotted versus the magnetic 
field. Note that the chemical potential difference 
can be defined as ( ) ( 1) ( )N N Nµ µ µ∆ = + −  where 

( ) ( ) ( 1)N E N E Nµ = − −  and ( )E N  is the N

Figure 5: The two-electron energy spectrum as 
function of the magnetic field for different quantum 

numbers of total angular momentum L=0, 1, …, 
16. (a) for non-interacting electrons and (b) for 
interacting electrons.  The solid curves indicate 

the energy levels for the spin–singlet state and the 
dash-dotted curves are for the spin-triplet states.

Figure 6: The two lowest energy levels of two 
interacting (upper graphs) and two non-interacting 

electrons (lower graphs) as a function of the 
magnetic field. The circle marks indicate the spin-

singlet state and the triangle marks are for the 
spin-triplet states.

Figure 7: The chemical potential difference or 
addition energy   as a function of the magnetic 

field. The circle marks show the addition energy of 
the spin-singlet state and the triangle marks show 

the addition energy of spin-triplet states.
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electrons ground state energy. This difference 
corresponds to an energy required to add one more 
electron into the TQRs containing N electrons which 
is referred to “addition energy”. It is evident from 
this definition that an eigenstate with larger addition 
energy is more energetically stable than that with 
lower addition energy. In figure 7, the circle marks 
indicate the addition energy for spin-singlet state 
and the triangle marks show addition energy for the 
spin-triplet states. As figure 7 shows, the addition 
energy for spin-singlet state is higher than that for 
spin-triplet states. Therefore, it can be concluded 
that the spin-singlet state for two-electron system 
are more stable than the spin-triplet states. 

Similar to the calculation of the magnetization in 
a self-assembled single QR [24], it is possible to 
calculate the magnetization in a concentric TQR. 
Using Byers-Yang relation, the magnetization of a 
TQR at zero temperature can be written as [25] 

( ) i

all occoupied
states i

EM B
B

∂
= −

∂∑
                  			 

				                            (4)

Figure 8 shows the magnetization in a TQR, (a) 
for a single electron and (b) for two electrons. In 
figure 8(b), the solid and dashed curves show the 
magnetization for interacting and non-interacting 
electrons, respectively. As figure 8 shows, for both 
single and two-electron systems, the magnetization 
oscillates with increasing magnetic field. Also, it 
can be seen that the electron-electron interaction 
decreases the amplitude and oscillation period of 
magnetization for the two-electron system. In the 
other words, the magnetization decreases due to the 
electron-electron interaction. 

4. SUMMARY  AND  CONCLUSION

A theoretical study has been presented for electronic 
properties of a TQR in the presence of magnetic 
field perpendicularly applied to the TQR plane. 
The eigenstates and eigenvalues of Hamiltonian 
for a single electron and two electrons have been 
calculated using finite difference method and 
exact diagonalization technique. The effects 
of centrifugal potential and magnetic filed on 
electron localization and energy spectrum have 
been investigated for a single electron. For two 
electrons, the electron-electron interaction increases 
the energy levels significantly relative to the non-
interacting electrons. It is found that the ground state 
includes both spin-singlet and spin-triplet states 
for interacting electrons, while for non-interacting 
case, the ground state includes only spin-singlet 
state. The period of Aharonov-Bohm oscillation for 
interacting electrons is equal to the half of that for 
non-interacting electrons which shows the fractional 
Aharonov-Bohm oscillations for interacting 
electrons. By calculating the addition energy, it 
is shown that the spin-singlet state is more stable 

Figure 8: The magnetization as a function of the 
magnetic field, (a) for a single electron and (b) for 

two electrons.
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than that the spin-triplet states. The magnetization 
shows oscillatory behavior by increasing magnetic 
field and the electron-electron interaction decreases 
magnetization effect. 
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